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What is Probability?

I Probability reasons about a sample, knowing the population.

I The goal of statistics is to estimate the population based on a sample.

I Both provide invaluable tools to modern machine learning.



Plan

I Facts about sets (to get our brains in gear).

I Definitions and facts about probabilities.

I Random variables and joint distributions.

I Characteristics of distributions (mean, variance, entropy).

I Some asymptotic results (a “high level” perspective).

Goals: get some intuition about probability, learn how to formulate
a simple proof, lay out some useful identities for use as a reference.

Non-goal: supplant an entire semester long course in probability.



Set Basics

A set is just a collection of elements denoted e.g.,
S = {s1, s2, s3},R = {r : some condition holds on r}.

I Intersection: the elements that are in both sets:
A ∩ B = {x : x ∈ A and x ∈ B}

I Union: the elements that are in either set, or both:
A ∪ B = {x : x ∈ A or x ∈ B}

I Complementation: all the elements that aren’t in the set:
AC = {x : x 6∈ A}.

A BA ∩ B A ∪ B

AC



Properties of Set Operations

I Commutativity: A ∪ B = B ∪ A

I Associativity: A ∪ (B ∪ C ) = (A ∪ B) ∪ C .

I Likewise for intersection.

I Proof?

Follows easily from commutative and associative
properties of “and” and “or” in the definitions.

I Distributive properties: A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )
A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )

I Proof? Show each side of the equality contains the other.

I DeMorgan’s Law ...see book.
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Disjointness and Partitions

I A sequence of sets A1,A2 . . . is called pairwise disjoint or
mutually exclusive if for all i 6= j ,Ai ∩ Aj = {}.

I If the sequence is pairwise disjoint and
⋃∞

i=1 Ai = S , then the
sequence forms a partition of S .

Partitions are useful in probability theory and in life:

B ∩ S = B ∩ (
∞⋃
i=1

Ai ) (def of partition)

=
∞⋃
i=1

(B ∩ Ai ) (distributive property)

Note that the sets B ∩ Ai are also pairwise disjoint (proof?).

If S is the whole space, what have we constructed?.
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Probability Terminology

Name What it is Common
Symbols

What it means

Sample Space Set Ω, S “Possible outcomes.”
Event Space Collection of subsets F ,E “The things that have

probabilities..”
Probability Measure Measure P, π Assigns probabilities

to events.
Probability Space A triple (Ω,F ,P)

Remarks: may consider the event space to be the power set of the sample
space (for a discrete sample space - more later).

e.g., rolling a fair die:

Ω = {1, 2, 3, 4, 5, 6}
F = 2Ω = {{1}, {2} . . . {1, 2} . . . {1, 2, 3} . . . {1, 2, 3, 4, 5, 6}, {}}

P({1}) = P({2}) = . . . = 1
6

(i.e., a fair die)
P({1, 3, 5}) = 1

2
(i.e., half chance of odd result)

P({1, 2, 3, 4, 5, 6}) = 1 (i.e., result is “almost surely” one of the faces).
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Axioms for Probability

A set of conditions imposed on probability measures (due to
Kolmogorov)

I P(A) ≥ 0,∀A ∈ F
I P(Ω) = 1

I P(
⋃∞

i=1 Ai ) =
∑∞

i=1 P(Ai ) where {Ai}∞i=1 ∈ F are pairwise
disjoint.

These quickly lead to:

I P(AC ) = 1− P(A) (since P(A) + P(AC ) = P(A ∪ AC ) = P(Ω) = 1).

I P(A) ≤ 1 (since P(AC ) ≥ 0).

I P({}) = 0 (since P(Ω) = 1).
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P(A ∪ B) – General Unions

A BA ∩ B

Recall that A,AC form a partition of Ω:

B = B∩Ω = B∩(A∪AC ) = (B∩A)∪(B∩AC )

And so: P(B) = P(B ∩ A) + P(B ∩ AC )

For a general partition this is called the “law of total

probability.”

P(A ∪ B) = P(A ∪ (B ∩ AC ))

= P(A) + P(B ∩ AC )

= P(A) + P(B)− P(B ∩ A)

≤ P(A) + P(B)

Very important difference between disjoint and non-disjoint unions.
Same idea yields the so-called “union bound” aka Boole’s inequality
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Conditional Probabilities

A BA ∩ B

For events A,B ∈ F with P(B) > 0, we may write the
conditional probability of A given B:

P(A|B) =
P(A ∩ B)

P(B)

Interpretation: the outcome is definitely in B, so treat
B as the entire sample space and find the probability
that the outcome is also in A.

This rapidly leads to: P(A|B)P(B) = P(A ∩ B) aka the “chain rule for
probabilities.” (why?)

When A1,A2 . . . are a partition of Ω:

P(B) =
∞∑
i=1

P(B ∩ Ai ) =
∞∑
i=1

P(B|Ai )P(Ai )

This is also referred to as the “law of total probability.”
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Conditional Probability Example
Suppose we throw a fair die:
Ω = {1, 2, 3, 4, 5, 6}, F = 2Ω, P({i}) = 1

6 , i = 1 . . . 6
A = {1, 2, 3, 4} i.e., “result is less than 5,”
B = {1, 3, 5} i.e., “result is odd.”

P(A) =

2

3

P(B) =
1

2

P(A|B) =
P(A ∩ B)

P(B)

=
P({1, 3})

P(B)

=
2

3

P(B|A) =
P(A ∩ B)

P(A)

=
1

2

Note that in general, P(A|B) 6= P(B|A) however we may quantify their

relationship.
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Bayes’ Rule

Using the chain rule we may see:

P(A|B)P(B) = P(A ∩ B) = P(B|A)P(A)

Rearranging this yields Bayes’ rule:

P(B|A) =
P(A|B)P(B)

P(A)

Often this is written as:

P(Bi |A) =
P(A|Bi )P(Bi )∑
i P(A|Bi )P(Bi )

Where Bi are a partition of Ω (note the bottom is just the law of
total probability).



Independence

Two events A,B are called independent if P(A∩B) = P(A)P(B).

When P(A) > 0 this may be written P(B|A) = P(B) (why?)
e.g., rolling two dice, flipping n coins etc.

Two events A,B are called conditionally independent given C
when P(A ∩ B|C ) = P(A|C )P(B|C ).

When P(A) > 0 we may write P(B|A,C ) = P(B|C )
e.g., “the weather tomorrow is independent of the weather
yesterday, knowing the weather today.”
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Random Variables – caution: hand waving

A random variable is a function X : Ω→ Rd

e.g.,

I Roll some dice, X = sum of the numbers.

I Indicators of events: X (ω) = 1A(ω). e.g., toss a coin, X = 1 if it came
up heads, 0 otherwise. Note relationship between the set theoretic
constructions, and binary RVs.

I Give a few monkeys a typewriter, X = fraction of overlap with complete
works of Shakespeare.

I Throw a dart at a board, X ∈ R2 are the coordinates which are hit.



Distributions
I By considering random variables, we may think of probability measures as

functions on the real numbers.

I Then, the probability measure associated with the RV is completely
characterized by its cumulative distribution function (CDF):
FX (x) = P(X ≤ x).

I If two RVs have the same CDF we call then identically distributed.

I We say X ∼ FX or X ∼ fX (fX coming soon) to indicate that X has the
distribution specified by FX (resp, fX ).
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Discrete Distributions

I If X takes on only a countable number of values, then we may
characterize it by a probability mass function (PMF) which
describes the probability of each value: fX (x) = P(X = x).

I We have:
∑

x fX (x) = 1 (why?) – since each ω maps to one
x , and P(Ω) = 1.

I e.g., general discrete PMF: fX (xi ) = θi ,
∑

i θi = 1, θi ≥ 0.

I e.g., bernoulli distribution: X ∈ {0, 1}, fX (x) = θx(1− θ)1−x

I A general model of binary outcomes (coin flips etc.).
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Discrete Distributions

I Rather than specifying each probability for each event, we
may consider a more restrictive parametric form, which will be
easier to specify and manipulate (but sometimes less general).

I e.g., multinomial distribution:
X ∈ Nd ,

∑d
i=1 xi = n, fX (x) = n!

x1!x2!···xd !

∏d
i=1 θ

xi
i .

I Sometimes used in text processing (dimensions correspond to
words, n is the length of a document).

I What have we lost in going from a general form to a
multinomial?
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Continuous Distributions
I When the CDF is continuous we may consider its derivative

fx(x) = d
dx

FX (x).

I This is called the probability density function (PDF).

I The probability of an interval (a, b) is given by

P(a < X < b) =
∫ b

a
fX (x) dx .

I The probability of any specific point c is zero: P(X = c) = 0 (why?).

I e.g., Uniform distribution: fX (x) = 1
b−a
· 1(a,b)(x)

I e.g., Gaussian aka “normal:” fX (x) = 1√
2πσ

exp{ (x−µ)2

2σ2 }
I Note that both families give probabilities for every interval on the real

line, yet are specified by only two numbers.
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Multiple Random Variables

We may consider multiple functions of the same sample space,
e.g., X (ω) = 1A(ω),Y (ω) = 1B(ω):

A

BA ∩ B May represent the joint distribution as a
table:

X=0 X=1

Y=0 0.25 0.15

Y=1 0.35 0.25

We write the joint PMF or PDF as fX ,Y (x , y)



Multiple Random Variables

Two random variables are called independent when the joint PDF
factorizes:

fX ,Y (x , y) = fX (x)fY (y)

When RVs are independent and identically distributed this is
usually abbreviated to “i.i.d.”
Relationship to independent events: X ,Y ind. iff

{ω : X (ω) ≤ x}, {ω : Y (ω) ≤ y} are independent events for all x , y .



Working with a Joint Distribution

We have similar constructions as we did in abstract prob. spaces:

I Marginalizing: fX (x) =
∫
Y fX ,Y (x , y) dy .

Similar idea to the law of total probability (identical for a discrete

distribution).

I Conditioning: fX |Y (x , y) =
fX ,Y (x ,y)

fY (y) =
fX ,Y (x ,y)∫

X fX ,Y (x ,y) dx
.

Similar to previous definition.

Old? Blood pressure? Heart Attack? P
0 0 0 0.22
0 0 1 0.01
0 1 0 0.15
0 1 1 0.01
1 0 0 0.18

. . . . . . . . . . . .

How to compute
P(heart attack|old)?



Characteristics of Distributions
We may consider the expectation (or “mean”) of a distribution:

E (X ) =

{∑
x xfX (x) X is discrete∫∞
−∞ xfX (x) dx X is continuous

Expectation is linear:

E(aX + bY + c) =
∑
x,y

(ax + by + c)fX ,Y (x , y)

=
∑
x,y

axfX ,Y (x , y) +
∑
x,y

byfX ,Y (x , y) +
∑
x,y

cfX ,Y (x , y)

= a
∑
x,y

xfX ,Y (x , y) + b
∑
x,y

yfX ,Y (x , y) + c
∑
x,y

fX ,Y (x , y)

= a
∑

x

x
∑

y

fX ,Y (x , y) + b
∑

y

y
∑

x

fX ,Y (x , y) + c

= a
∑

x

xfX (x) + b
∑

y

yfY (y) + c

= aE(X ) + bE(Y ) + c
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Characteristics of Distributions

Questions:

1. E [EX ] =

∑
x(EX )fX (x) = (EX )

∑
x fX (x) = EX

2. E (X · Y ) = E (X )E (Y )?
Not in general, although when fX ,Y = fX fY :

E (X ·Y ) =
∑
x ,y

xyfX (x)fY (y) =
∑
x

xfX (x)
∑
y

yfY (y) = EX ·EY
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Characteristics of Distributions

We may consider the variance of a distribution:

Var(X ) = E (X − EX )2

This may give an idea of how “spread out” a distribution is.

A useful alternate form is:

E (X − EX )2 = E [X 2 − 2XE (X ) + (EX )2]

= E (X 2)− 2E (X )E (X ) + (EX )2

= E (X 2)− (EX )2

Variance of a coin toss?
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Characteristics of Distributions

Variance is non-linear but the following holds:

Var(aX ) = E(aX − E(aX ))2 = E(aX − aEX )2 = a2E(X − EX )2 = a2Var(X )

Var(X+c) = E(X+c−E(X+c))2 = E(X−EX+c−c)2 = E(X−EX )2 = Var(X )

Var(X + Y ) = E(X − EX + Y − EY )2

= E(X − EX )2︸ ︷︷ ︸
Var(X )

+ E(Y − EY )2︸ ︷︷ ︸
Var(Y )

+2 E(X − EX )(Y − EY )︸ ︷︷ ︸
Cov(X ,Y )

So when X ,Y are independent we have:

Var(X + Y ) = Var(X ) + Var(Y )

(why?)
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Putting it all together

Say we have X1 . . .Xn i.i.d., where EXi = µ and Var(Xi ) = σ2.

We want to know the expectation and variance of X̄n = 1
n

∑n
i=1 Xi .

E (X̄n) =

E [
1

n

n∑
i=1

Xi ] =
1

n

n∑
i=1

E (Xi ) =
1

n
nµ = µ

Var(X̄n) = Var(
1

n

n∑
i=1

Xi ) =
1

n2
nσ2 =

σ2

n
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Entropy of a Distribution

Entropy is a measure of uniformity in a distribution.

H(X ) = −
∑
x

fX (x) log2 fX (x)

Imagine you had to transmit a sample from fX , so you construct
the optimal encoding scheme:

Entropy gives the mean depth in the tree (= mean number of bits).



Law of Large Numbers (LLN)

Recall our variable X̄n = 1
n

∑n
i=1 Xi .

We may wonder about its behavior as n→∞.

We had: EX̄n = µ,Var(X̄n) = σ2

n .

Distribution appears to be “contracting:” as n increases, variance
is going to 0.

Using Chebyshev’s inequality:

P(|X̄n − µ| ≥ ε) ≤
σ2

nε2
→ 0

For any fixed ε, as n→∞.
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Law of Large Numbers (LLN)

Recall our variable X̄n = 1
n

∑n
i=1 Xi .

We may wonder about its behavior as n→∞.

The weak law of large numbers:

lim
n→∞

P(|X̄n − µ| < ε) = 1

In English: choose ε and a probability that |X̄n − µ| < ε, I can find you

an n so your probability is achieved.

The strong law of large numbers:

P( lim
n→∞

X̄n = µ) = 1

In English: the mean converges to the expectation “almost surely” as n
increases.

Two different versions, each holds under different conditions, but i.i.d.

and finite variance is enough for either.
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increases.

Two different versions, each holds under different conditions, but i.i.d.

and finite variance is enough for either.
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Central Limit Theorem (CLT)
The distribution of X̄n also converges weakly to a Gaussian,

lim
n→∞

FX̄n
(x) = Φ(

x − µ√
nσ

)

Simulated n dice rolls and took average, 5000 times:
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Two kinds of convergence went into this picture (why 5000?):

1. True distribution converges to a Gaussian (CLT).

2. Empirical distribution converges to true distribution (Glivenko-Cantelli).
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Asymptotics Opinion

Ideas like these are crucial to machine learning:

I We want to minimize error on a whole population (e.g.,
classify text documents as well as possible)

I We minimize error on a training set of size n.

I What happens as n→∞?

I How does the complexity of the model, or the dimension of
the problem affect convergence?


