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What is Probability?

Probability

i~ @6
Population Sample

» Probability reasons about a sample, knowing the population.
» The goal of statistics is to estimate the population based on a sample.

» Both provide invaluable tools to modern machine learning.



Plan

Facts about sets (to get our brains in gear).
Definitions and facts about probabilities.
Random variables and joint distributions.

Characteristics of distributions (mean, variance, entropy).
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Some asymptotic results (a “high level” perspective).

Goals: get some intuition about probability, learn how to formulate
a simple proof, lay out some useful identities for use as a reference.

Non-goal: supplant an entire semester long course in probability.



Set Basics

A set is just a collection of elements denoted e.g.,
S = {s1,,s3}, R = {r : some condition holds on r}.

» Intersection: the elements that are in both sets:
ANB={x:x€Aand x € B}

» Union: the elements that are in either set, or both:
AUB={x:x€Aorx € B}

» Complementation: all the elements that aren't in the set:
A€ = {x:x ¢ A}.




Properties of Set Operations

» Commutativity: AUB=BUA

» Associativity: AU(BUC)=(AUB)UC.
» Likewise for intersection.

» Proof?
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Associativity: AU(BUC)=(AuB)UC.
Likewise for intersection.
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Proof?



Properties of Set Operations
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Commutativity: AUB=BUA
Associativity: AU(BUC)=(AuB)UC.
Likewise for intersection.

Proof? Follows easily from commutative and associative

properties of “and” and “or" in the definitions.

Distributive properties: AN (BUC)=(ANB)U(AN ()
AUu(BNC)=(AuB)Nn(AUC(C)

» Proof? Show each side of the equality contains the other.

DeMorgan’s Law ...see book.



Disjointness and Partitions

> A sequence of sets Aj, A ... is called pairwise disjoint or
mutually exclusive if for all i # j,AiNA; = {}.

» If the sequence is pairwise disjoint and | J72; A = S, then the
sequence forms a partition of S.

Partitions are useful in probability theory and in life:

BnNnS = BN (U Ai) (def of partition)
i=1

= U(B N A;) (distributive property)
i=1

Note that the sets B N A; are also pairwise disjoint (proof?).



Disjointness and Partitions

> A sequence of sets Aj, A ... is called pairwise disjoint or
mutually exclusive if for all i # j,AiNA; = {}.

» If the sequence is pairwise disjoint and | J72; A = S, then the
sequence forms a partition of S.

Partitions are useful in probability theory and in life:

BnNnS = BN (U Ai) (def of partition)
i=1

e e}

= U(B N A;) (distributive property)
i=1

Note that the sets B N A; are also pairwise disjoint (proof?).
If S is the whole space, what have we constructed?.



Probability Terminology

Name What it is Common What it means
Symbols

Sample Space Set QS “Possible outcomes.”

Event Space Collection of subsets | F, E “The things that have
probabilities..”

Probability Measure | Measure P, 7 Assigns  probabilities
to events.

Probability Space A triple (Q,F,P)

Remarks: may consider the event space to be the power set of the sample
space (for a discrete sample space - more later).
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Probability Terminology

Name What it is Common What it means
Symbols

Sample Space Set QS “Possible outcomes.”

Event Space Collection of subsets | F, E “The things that have
probabilities..”

Probability Measure | Measure P, 7 Assigns  probabilities
to events.

Probability Space A triple (Q,F,P)

Remarks: may consider the event space to be the power set of the sample
space (for a discrete sample space - more later). e.g., rolling a fair die:

= {1,2,3,4,5,6}
= 2Q = {{1} {2}...{1,2}...{1,2,3}...{1,2,3,4,5,6},{}}
P({1}) = P({2}) = £ (i.e., a fair die)

P({1,3,5}) = 3 (i.e., half chance of odd result)
P({1,2,3,4,5,6}) =1 (i.e., result is “almost surely” one of the faces).



Axioms for Probability

A set of conditions imposed on probability measures (due to
Kolmogorov)

» P(A) >0,VAe F

» P(Q)=1

> P(U2, Ai) =D 72, P(A;) where {A;}$2, € F are pairwise
disjoint.



Axioms for Probability

A set of conditions imposed on probability measures (due to
Kolmogorov)

» P(A) >0,VAe F
» P(Q)=1
> P(U2, Ai) =D 72, P(A;) where {A;}$2, € F are pairwise
disjoint.
These quickly lead to:
> P(AC) =1 — P(A) (since P(A) + P(AS) = P(AU AS) = P(Q) = 1).
> P(A) <1 (since P(A) > 0).
» P({}) =0 (since P(Q) = 1).
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P(AU B) — General Unions

Recall that A, A€ form a partition of Q:
B = BNQ = BN(AUA®) = (BNA)U(BNAC)
And so: P(B) = P(BN A) + P(B N A%)

For a general partition this is called the “law of total
probability.”
P(AUB) = P(AU(BNA%))
= P(A)+ P(BNA°)
(
P(A

= P(A)+ P(B) - P(BNA)
)+ P(B)

Very important difference between disjoint and non-disjoint unions.

Same idea yields the so-called “union bound” aka Boole's inequality

<



Conditional Probabilities

For events A, B € F with P(B) > 0, we may write the
conditional probability of A given B:

P(AN B)
P(B)
Interpretation: the outcome is definitely in B, so treat

B as the entire sample space and find the probability
that the outcome is also in A.

P(A|B) =
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Conditional Probabilities

For events A, B € F with P(B) > 0, we may write the
conditional probability of A given B:

P(AN B)

P(B)
Interpretation: the outcome is definitely in B, so treat
B as the entire sample space and find the probability
that the outcome is also in A.

P(A|B) =

This rapidly leads to: P(A|B)P(B) = P(AN B) aka the “chain rule for
probabilities.” (why?)

When A;, A> ... are a partition of Q:
P(B) =Y P(BNA) =Y P(B|A)P(A)
i=1 i=1

This is also referred to as the “law of total probability.”



Conditional Probability Example
Suppose we throw a fair die:
Q=1{1,2,3,4,56}, F=2% P({i})=¢%,i=1...6
A={1,2,3,4} i.e., "result is less than 5,"
B ={1,3,5} i.e., “result is odd.”

P(A) =
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Conditional Probability Example

Suppose we throw a fair die:

Q=1{1,2,3,4,56}, F=2% P({i})=¢%,i=1...6
A={1,2,3,4} i.e., "result is less than 5,"
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Conditional Probability Example
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Q=1{1,2,3,4,56}, F=22 P({i})=¢%, i=1...
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Q=1{1,2,3,4,56}, F=22 P({i})=¢%, i=1...

A={1,2,3,4} i.e., "result is less than 5,"
B ={1,3,5} i.e., “result is odd.”
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Conditional Probability Example

Suppose we throw a fair die:

Q=1{1,2,3,4,56}, F=22 P({i})=¢%, i=1...

A={1,2,3,4} i.e., "result is less than 5,"
B ={1,3,5} i.e., “result is odd.”

PA) — %
P(B) = %
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_ PUL3D
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Conditional Probability Example

Suppose we throw a fair die:

Q=1{1,2,3,4,56}, F=2% P({i})=¢%,i=1...6
A={1,2,3,4} i.e., "result is less than 5,"

B ={1,3,5} i.e., “result is odd.”

P(A) = %
P(B) = 1
= 3
P(AN B
_P({L3))
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Conditional Probability Example

Suppose we throw a fair die:

Q=1{1,2,3,4,56}, F=2% P({i})=¢%,i=1...6
A={1,2,3,4} i.e., "result is less than 5,"

B ={1,3,5} i.e., “result is odd.”

P(A) = %
P(B) = 1
= 3
P(AN B
PAg) = hg) PE = o
_ P13} _ 1
~ P(B) 2
2

Note that in general, P(A|B) # P(B|A) however we may quantify their
relationship.



Bayes' Rule

Using the chain rule we may see:

P(A|B)P(B) = P(AN B) = P(B|A)P(A)

Rearranging this yields Bayes’ rule:

P(BIA) = P(A@\F)’(B)
Often this is written as:
P(A|B:)P(B;)

PBIA) = S palg)P(B)

Where B; are a partition of Q (note the bottom is just the law of
total probability).




Independence

Two events A, B are called independent if P(AN B) = P(A)P(B).
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Independence

Two events A, B are called independent if P(AN B) = P(A)P(B).

When P(A) > 0 this may be written P(B|A) = P(B) (why?)
e.g., rolling two dice, flipping n coins etc.

Two events A, B are called conditionally independent given C
when P(AN B|C) = P(A|C)P(B|C).

When P(A) > 0 we may write P(B|A, C) = P(B|C)

e.g., "“the weather tomorrow is independent of the weather
yesterday, knowing the weather today.”



Random Variables — caution: hand waving

A random variable is a function X : Q — R¢
eg.,
» Roll some dice, X = sum of the numbers.

> Indicators of events: X(w) = 1a(w). e.g., toss a coin, X =1 if it came
up heads, 0 otherwise. Note relationship between the set theoretic
constructions, and binary RVs.

» Give a few monkeys a typewriter, X = fraction of overlap with complete
works of Shakespeare.

> Throw a dart at a board, X € R? are the coordinates which are hit.



Distributions

>

>

By considering random variables, we may think of probability measures as
functions on the real numbers.

Then, the probability measure associated with the RV is completely
characterized by its cumulative distribution function (CDF):

Fx(x) = P(X < x).

If two RVs have the same CDF we call then identically distributed.

We say X ~ Fx or X ~ fx (fx coming soon) to indicate that X has the
distribution specified by Fx (resp, fx).

1.0
1.0

Fe()
0.6
Fel(X)

0.4
I
0.4

0.2
0.2

0.0
I




Discrete Distributions

» If X takes on only a countable number of values, then we may
characterize it by a probability mass function (PMF) which
describes the probability of each value: fx(x) = P(X = x).
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Discrete Distributions

» If X takes on only a countable number of values, then we may
characterize it by a probability mass function (PMF) which
describes the probability of each value: fx(x) = P(X = x).

» We have: ) fx(x) =1 (why?) — since each w maps to one
x, and P(Q) = 1.

> e.g., general discrete PMF: fx(x;) =6, >.;0i =1,0; > 0.

> e.g., bernoulli distribution: X € {0,1}, fx(x) = 0X(1 — §)1~~

A general model of binary outcomes (coin flips etc.).

v



Discrete Distributions

» Rather than specifying each probability for each event, we
may consider a more restrictive parametric form, which will be
easier to specify and manipulate (but sometimes less general).



Discrete Distributions

» Rather than specifying each probability for each event, we
may consider a more restrictive parametric form, which will be
easier to specify and manipulate (but sometimes less general).

> e.g., multinomial distribution:

d d pxi
X eN ZI 1Xi = n, fX(X) - x1'x2' Xg! H 9

> Sometlmes used in text processing (dlmen5|ons correspond to

words, n is the length of a document).

» What have we lost in going from a general form to a
multinomial?



Continuous Distributions

» When the CDF is continuous we may consider its derivative
fu(x) = 4 Fx(x).
> This is called the probability density function (PDF).
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0 (why?).
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This is called the probability density function (PDF).
The probability of an interval (a, b) is given by

P(a < X < b) = [* fx(x) dx.

The probability of any specific point c is zero: P(X =c¢) =
e.g., Uniform distribution: fx(x) = ;2 - 1(5,5)(x)

0 (why?).



Continuous Distributions

» When the CDF is continuous we may consider its derivative
f(x) = L Fx(x).
> This is called the probability density function (PDF).
> The probability of an interval (a, b) is given by
P(a < X < b) = [* fx(x) dx.
» The probability of any specific point c is zero: P(X = ¢) = 0 (why?).
> e.g., Uniform distribution: fx(x) = 31 - 1(55)(x)

2
> e.g., Gaussian aka “normal:” fx(x) = QIM exp{ (X;G‘é) }




Continuous Distributions

>

vy

vy VY

When the CDF is continuous we may consider its derivative

fu(x) = 4 Fx(x).

This is called the probability density function (PDF).

The probability of an interval (a, b) is given by

P(a < X < b) = [* fx(x) dx.

The probability of any specific point ¢ is zero: P(X = ¢) = 0 (why?).

e.g., Uniform distribution: fx(x) = ;= - 1(3 ) (x)

e.g., Gaussian aka “normal:” fx(x) = 27\'0 exp{ 5 e “ }

Note that both families give probabilities for every |nterva| on the real
line, yet are specified by only two numbers.

dnorm (x)
2




Multiple Random Variables

We may consider multiple functions of the same sample space,
e.g., X(w) =1a(w), Y(w) = 1g(w):

May represent the joint distribution as a
table:

X=0

Y=0
Y=1

X=1
0.15

0.25
We write the joint PMF or PDF as fx y(x, y)

0.25
0.35




Multiple Random Variables

Two random variables are called independent when the joint PDF
factorizes:

fx.y (x,y) = fx(x)fy (y)

When RVs are independent and identically distributed this is
usually abbreviated to “i.i.d.”

Relationship to independent events: X, Y ind. iff

{w: X(w) < x},{w: Y(w) < y} are independent events for all x, y.

2 2




Working with a Joint Distribution

We have similar constructions as we did in abstract prob. spaces:

> Marginalizing: fx(x) = [}, fx v(x,y) dy.
Similar idea to the law of total probability (identical for a discrete
distribution).

fxy(y) _  fxv(xy)
fr(y) Jx fx v (xy) dx

» Conditioning: fx|y(x,y) =

Similar to previous definition.

Old? | Blood pressure? | Heart Attack? P
0 0 0 0.22
8 (1) (1) 8(1]; How to compute
: ?
0 1 1 0.01 P(heart attack|old)?
1 0 0 0.18




Characteristics of Distributions
We may consider the expectation (or “mean”) of a distribution:

E(X) = > Xx(x) X is discrete
J75 xfx(x) dx  X'is continuous



Characteristics of Distributions
We may consider the expectation (or “mean”) of a distribution:

E(X) = {Zx xfx (x) X is discrete

Expectation is linear:

E(aX + bY +¢)

J75 xfx(x) dx  X'is continuous

> (ax+ by + S)fx,v(x,y)

L4

Z aXnyy(va) + Z byfxyy(X7y) + Z Cfxyy(X,y)

X,y X,y Xy

ay xfy(6,y)+bY vy (xy)+c Y fov(xy)
X,y X,y X,y

aZxZ xv(x,y)+ beZ fxy(x,y)+c
afoX(x) + befy(y) +c

aE(X)+ bE(Y)+c
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Characteristics of Distributions

Questions:
L E[EX] = 2 (EX)fx(x) = (EX) X2, fx(x) = EX
2. E(X-Y)=E(X)E(Y)?
Not in general, although when fx y = fxfy:

E(X'Y)= nyfx(x)fy fox nyy (y) = EX-EY
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Characteristics of Distributions

We may consider the variance of a distribution:

Var(X) = E(X — EX)?
This may give an idea of how “spread out” a distribution is.

A useful alternate form is:

E(X — EX)? E[X? = 2XE(X) + (EX)?]
= E(X?) —2E(X)E(X) + (EX)?

= E(X?) — (EX)?

Variance of a coin toss?
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Characteristics of Distributions

Variance is non-linear but the following holds:
Var(aX) = E(aX — E(aX))’ = E(aX — aEX)* = a°E(X — EX)® = a’Var(X)

Var(X+c) = E(X+c—E(X+c))* = E(X—EX+c—c)® = E(X—EX)? = Var(X)

Var(X+Y) = E(X—-EX+Y —EY)
= E(X—EX)’4+E(Y —EY)*4+2E(X — EX)(Y — EY)

Var(X) Var(Y) Cov(X,Y)




Characteristics of Distributions
Variance is non-linear but the following holds:
Var(aX) = E(aX — E(aX))’ = E(aX — aEX)® = a°E(X — EX)? = a°Var(X)

Var(X+c) = E(X+c—E(X+c))* = E(X—EX+c—c)® = E(X—EX)? = Var(X)

Var(X+Y) = E(X—-EX+Y —EY)
= E(X- EX)2 +E(Y — EY)2 +2E(X — EX)(Y — EY)
Var(X) Var(Y) Cov(X,Y)

So when X, Y are independent we have:
Var(X + Y) = Var(X) + Var(Y)

(why?)
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Putting it all together

Say we have X ... X, i.i.d., where EX; = y and Var(X;) = 02

We want to know the expectation and variance of X, = % X

=

- 1 « 1« 1
E(Xn):E[;ZXi]:;ZE(Xi):E”M:M
i=1 i=1

Var(X,) = Var(% ZX,—) =
i=1



Putting it all together

Say we have X ... X, i.i.d., where EX; = y and Var(X;) = 02

We want to know the expectation and variance of X, = % 1 Xi

i=

=E[,1,ZX,-] ZE(X *nu 1

q

Var = Var(= ZX



Entropy of a Distribution
Entropy is a measure of uniformity in a distribution.

H(X) == fx(x)log, fx(x)

Imagine you had to transmit a sample from fx, so you construct
the optimal encoding scheme:

P(a)=090 P(b)=005 P(c)=003 P(d) =002 P(a) =025 P(bj=025 P(c)=025 P(d)=025

Entropy gives the mean depth in the tree (= mean number of bits).
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Law of Large Numbers (LLN)

Recall our variable X, = > | X;.

n
We may wonder about its behavior as n — oc.

We had: EX, = p,Var(X,) = 2.

Distribution appears to be “contracting:” as n increases, variance
is going to 0.

Using Chebyshev's inequality:

For any fixed ¢, as n — oo.
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Law of Large Numbers (LLN)

. Y _ 1 n .
Recall our variable X, = ="\ | X;.
We may wonder about its behavior as n — oo.

The weak law of large numbers:
lim P(|X, —pu| <e)=1
n—oo
In English: choose € and a probability that |)_<,, — p| <€, | can find you

an n so your probability is achieved.

The strong law of large numbers:

P(lim X, =p)=1

n—oo

In English: the mean converges to the expectation “almost surely” as n
increases.

Two different versions, each holds under different conditions, but i.i.d.
and finite variance is enough for either.
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Central Limit Theorem (CLT)

The distribution of X, also converges weakly to a Gaussian,

Jim Fr, () = ®C =)

Simulated n dice rolls and took average, 5000 times:

n=1 n=2 n=10 n=75

Two kinds of convergence went into this picture (why 50007):
1. True distribution converges to a Gaussian (CLT).

2. Empirical distribution converges to true distribution (Glivenko-Cantelli).



Asymptotics Opinion

Ideas like these are crucial to machine learning:

» We want to minimize error on a whole population (e.g.,
classify text documents as well as possible)

» We minimize error on a training set of size n.
» What happens as n — oo?

» How does the complexity of the model, or the dimension of
the problem affect convergence?



