Chapter 38

1. (@ We assume all the power results in photon production at the wavelength
A=589 nm. Let R be the rate of photon production and E be the energy of a single
photon. Then,

P = RE = RhclA,

where E = hf'and f = ¢/ are used. Here £ is the Planck constant, f'is the frequency of the
emitted light, and A is its wavelength. Thus,

P (589x10°m)(100W)
T he (6.63x10™ J-5)(3.00x10° m/s)

=2.96x10% photon/s.

(b) Let 7 be the photon flux a distance » from the source. Since photons are emitted
uniformly in all directions, R = 4l and

20
e R _ 2.96><104 photon/s2 _4.86x107m.
4zl |47 (1.00x10° photon/m? -s)
(c) The photon flux is
20
_ R - 2.96x10 photgn/s _5.89%10" ph(zton .
Arr 47(2.00m) m=-s

333



344 CHAPTER 38

11. We use the uncertainty relationship AxAp ># . Letting Ax = A, the de Broglie
wavelength, we solve for the minimum uncertainty in p:

ap=l P
Ax 274 27

where the de Broglie relationship p = A/A is used. We use 1/2x = 0.080 to obtain Ap =
0.080p. We would expect the measured value of the momentum to lie between 0.92p and
1.08p. Measured values of zero, 0.5p, and 2p would all be surprising.
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16. (a) The momentum of the electron is

_h_6.63x10*Js

2 —mZ 3.3)(10_24 kg -m/s.
. X

(b) The momentum of the photon is the same as that of the -electron:
p=3.3x10"kg-m/s.

(c) The kinetic energy of the electron is

> (3.3x10%kg-mis)’
k=L i a ) 60x103-38ev.
2m,  2(9.11x10™'kg)

(d) The kinetic energy of the photon is

K,, = pc=(3.3x10 kg-m/s)(2.998x10° m/s) = 9.9x10™* J = 6.2 keV.
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17. THINK In this problem we solve a special case of the Schriodinger’s equation
where the potential energy is U(x) =U, = constant.

EXPRESS For U = Uy, Schrddinger’s equation becomes

d’y  8n’m
4
dx? h’

[E-U,ly =0.
We substitute y = ye™.

2

ANALYZE The second derivative is évl —k*y "™ = —k’y. The result is

2 =
X

m
[£-Uyly =0.

/8n2m 21
k: T[E_UO] :7«[2m[E—UO].

LEARN Another way to realize this is to note that with a constant potential energy
U(x)=U,, we can simply redefine the total energy as E'=E-U,, and the

Schrodinger’s equation looks just like the free-particle case:

E 8n

Solving for &, we obtain

d’y 8z°mE'

dx? h?

v =0.

The solution is y =y, exp(ik'x), where

. 87m’mE' 2 -2
pr=rm k:%\/ZmE :%,/Zm(E—UO).

hZ
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19. THINK Even though E <U,, barrier tunneling can still take place quantum
mechanically with finite probability.

EXPRESS If m is the mass of the particle and £ is its energy, then the transmission
coefficient for a barrier of height U, and width L is given by T =e ", where

b= M
\/ h? '

If the change AU, in U, is small (as it is), the change in the transmission coefficient is
given by

ar =T AU, =-2LT db AU,.
b b
Now,
db 1 [eem 1 [Bm(U,-E) b
du, 2Ju,-eN n*  2(U,-E) h’ 2(U,-E)
Thus,
AT = —L7p s

b

ANALYZE (a) With

817 (9.11x10™ kg ) (6.8 eV —-5.1eV)(1.6022x107 J/eV
b= |— (041 ] )(2 - / ):6.67><109m’1,
(6.6261x10J-s)
we have bL=(6.67x10°m™)(750x10*m™)=5.0, and
AT _ AU, 2_(5.0)(0.010)(6.8ev):_020l
U,—E 6.8eV —5.1eV

There is a 20% decrease in the transmission coefficient.
(b) The change in the transmission coefficient is given by

AT = %AL =—2be AL = —2bTAL

and

AT ] )
—=2bAL= ~2(6.67x10° m™)(0.010)(750x10* m)=-0.10 .
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There is a 10% decrease in the transmission coefficient.
(c) The change in the transmission coefficient is given by

AT = EAE =—2Le d—bAE = —2LT@AE.
dE dE dE

Now, db/dE =—-db/dU, =-b/2(U, - E), s0

%:bL AE :(5_0)(0.010)(5.1ev)

U,—E 6.8eV —5.1eV

=0.15.

There is a 15% increase in the transmission coefficient.

LEARN Increasing the barrier height or the barrier thickness reduces the probability of
transmission, while increasing the kinetic energy of the electron increases the probability.
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51. (a) We use Eq. 38-6:

_hf-® helA-® (1240eV-nm/400nm)-1.8eV _13v

e e e

V.

stop
(b) The speed v of the electron satisfies

_1 2 _1 2 2
Kmax =;my _?(mec )(V/C) - Ephoton - .

Using Table 37-3, we find

2(Eoon — P
e [A =) _ \/ZQVS”F’ =c\/2€VS‘§" =(2.998x10° m/s) Lell3v).
m m m,c 511x10°eV

e e

=6.8x10°m/s.



