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Chapter 39 
 

# 9. The discussion on the probability of detection for the one-dimensional case can be readily 

extended to two dimensions. In analogy to Eq. 39-10, the normalized wave function in two 

dimensions can be written as  
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The probability of detection by a probe of dimension  x y   placed at ( , )x y  is 
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With 200 pmx yL L L= = = and 4.00 pmx y = = , the probability of detecting an electron in 

( , ) (1,3)x yn n =  state by placing a probe at (0.200 , 0.800 )L L  is 
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# 11. Using / (1240eV nm)/E hc  = =  , the energies associated with a , b  and c  are  
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The ground-state energy is  

 

 1 4 450.0 eV 426.0 eV 24.0 eVcE E E= − = − = . 

 

Since 2 1aE E E= − , the energy of the first excited state is 

 

 2 1 24.0 eV 85.0 eV 109 eVaE E E= + = + = . 
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# 15. (a) The plot shown below for |200(r)|2 is to be compared with the dot plot of Fig.  

39-21. We note that the horizontal axis of our graph is labeled “r,” but it is actually r/a (that is, it 

is in units of the parameter a). Now, in the plot below there is a high central peak between r = 0 

and r  2a, corresponding to the densely dotted region around the center of the dot plot of Fig. 

39-21. Outside this peak is a region of near-zero values centered at r = 2a, where 200 = 0. This 

is represented in the dot plot by the empty ring surrounding the central peak. Further outside is a 

broader, flatter, low peak that reaches its maximum value at r = 4a. This corresponds to the outer 

ring with near-uniform dot density, which is lower than that of the central peak. 

 

 
 

(b) The extrema of 2(r) for 0 < r <  may be found by squaring the given function, 

differentiating with respect to r, and setting the result equal to zero: 
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which has roots at r = 2a and r = 4a. We can verify directly from the plot above that r = 4a is 

indeed a local maximum of  200

2 ( ).r  As discussed in part (a), the other root (r = 2a) is a local 

minimum. 

 

(c) Using Eq. 39-43 and Eq. 39-41, the radial probability is 
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(d) Let x = r/a. Then 
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where we have used the integral formula 
0


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# 28. (a) We use Eq. 39-44. At r = 0, P(r)  r2 = 0. 
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(c) At r = 3a, ( ) ( )
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# 35. THINK The ground state of the hydrogen atom corresponds to n = 1, 0,=l  and 0.m =l   

 

EXPRESS The proposed wave function is 
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where a is the Bohr radius. Substituting this into the right side of Schrödinger’s equation, our 

goal is to show that the result is zero.  

 

ANALYZE The derivative is 
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The energy of the ground state is given by E me h= − 4

0

2 28  and the Bohr radius is given by 
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0 ,  so 8 .a h me E e a  = = −  The potential energy is given by  

 
2 4U e r= − , 

so 

 
2 2 2

2 2 2

2

2

8 8 8 1 2

8 4 8

1 2 1 1 2
.

m m e e m e
E U

h h a r h a r

me

h a r a a r

  
  

  


 

  

  



   
− = − + = − +   

  

   
= − + = − +       

 

 

The two terms in Schrödinger’s equation cancel, and the proposed function  satisfies that 

equation. 

 

LEARN The radial probability density of the ground state of hydrogen atom is given by Eq. 39-

44: 
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A plot of P(r) is shown in Fig. 39-20. 


