Chapter 39

\# 9. The discussion on the probability of detection for the one-dimensional case can be readily extended to two dimensions. In analogy to Eq. 39-10, the normalized wave function in two dimensions can be written as

$$
\begin{aligned}
\psi_{n_{x}, n_{y}}(x, y) & =\psi_{n_{x}}(x) \psi_{n_{y}}(y)=\left[\sqrt{\frac{2}{L_{x}}} \sin \left(\frac{n_{x} \pi}{L_{x}} x\right)\right]\left[\sqrt{\frac{2}{L_{y}}} \sin \left(\frac{n_{y} \pi}{L_{y}} y\right)\right] \\
& =\sqrt{\frac{4}{L_{x} L_{y}}} \sin \left(\frac{n_{x} \pi}{L_{x}} x\right) \sin \left(\frac{n_{y} \pi}{L_{y}} y\right) .
\end{aligned}
$$

The probability of detection by a probe of dimension $\Delta x \Delta y$ placed at (x, y) is

$$
p(x, y)=\left|\psi_{n_{x}, n_{y}}(x, y)\right|^{2} \Delta x \Delta y=\frac{4(\Delta x \Delta y)}{L_{x} L_{y}} \sin ^{2}\left(\frac{n_{x} \pi}{L_{x}} x\right) \sin ^{2}\left(\frac{n_{y} \pi}{L_{y}} y\right) .
$$

With $L_{x}=L_{y}=L=200 \mathrm{pm}$ and $\Delta x=\Delta y=4.00 \mathrm{pm}$, the probability of detecting an electron in $\left(n_{x}, n_{y}\right)=(1,3)$ state by placing a probe at $(0.200 L, 0.800 L)$ is

$$
\begin{aligned}
p & =\frac{4(\Delta x \Delta y)}{L_{x} L_{y}} \sin ^{2}\left(\frac{n_{x} \pi}{L_{x}} x\right) \sin ^{2}\left(\frac{n_{y} \pi}{L_{y}} y\right) \\
& =\frac{4(4.00 \mathrm{pm})^{2}}{(200 \mathrm{pm})^{2}} \sin ^{2}\left(\frac{\pi}{L} 0.200 L\right) \sin ^{2}\left(\frac{3 \pi}{L} 0.800 L\right) \\
& =4\left(\frac{4.00 \mathrm{pm}}{200 \mathrm{pm}}\right)^{2} \sin ^{2}(0.200 \pi) \sin ^{2}(2.40 \pi)=5.0 \times 10^{-4} .
\end{aligned}
$$

\# 11. Using $E=h c / \lambda=(1240 \mathrm{eV} \cdot \mathrm{nm}) / \lambda$, the energies associated with λ_{a}, λ_{b} and λ_{c} are

$$
\begin{aligned}
& E_{a}=\frac{h c}{\lambda_{a}}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{14.588 \mathrm{~nm}}=85.00 \mathrm{eV} \\
& E_{b}=\frac{h c}{\lambda_{b}}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{4.8437 \mathrm{~nm}}=256.0 \mathrm{eV} \\
& E_{c}=\frac{h c}{\lambda_{c}}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{2.9108 \mathrm{~nm}}=426.0 \mathrm{eV} .
\end{aligned}
$$

The ground-state energy is

$$
E_{1}=E_{4}-E_{c}=450.0 \mathrm{eV}-426.0 \mathrm{eV}=24.0 \mathrm{eV} .
$$

Since $E_{a}=E_{2}-E_{1}$, the energy of the first excited state is

$$
E_{2}=E_{1}+E_{a}=24.0 \mathrm{eV}+85.0 \mathrm{eV}=109 \mathrm{eV} .
$$

\# 15. (a) The plot shown below for $\left|\psi_{200}(r)\right|^{2}$ is to be compared with the dot plot of Fig. 39-21. We note that the horizontal axis of our graph is labeled " r," but it is actually r / a (that is, it is in units of the parameter a). Now, in the plot below there is a high central peak between $r=0$ and $r \sim 2 a$, corresponding to the densely dotted region around the center of the dot plot of Fig. 39-21. Outside this peak is a region of near-zero values centered at $r=2 a$, where $\psi_{200}=0$. This is represented in the dot plot by the empty ring surrounding the central peak. Further outside is a broader, flatter, low peak that reaches its maximum value at $r=4 a$. This corresponds to the outer ring with near-uniform dot density, which is lower than that of the central peak.

(b) The extrema of $\psi^{2}(r)$ for $0<r<\infty$ may be found by squaring the given function, differentiating with respect to r, and setting the result equal to zero:

$$
-\frac{1}{32} \frac{(r-2 a)(r-4 a)}{a^{6} \pi} e^{-r / a}=0
$$

which has roots at $r=2 a$ and $r=4 a$. We can verify directly from the plot above that $r=4 a$ is indeed a local maximum of $\psi_{200}^{2}(r)$. As discussed in part (a), the other root $(r=2 a)$ is a local minimum.
(c) Using Eq. 39-43 and Eq. 39-41, the radial probability is

$$
P_{200}(r)=4 \pi r^{2} \psi_{200}^{2}(r)=\frac{r^{2}}{8 a^{3}}\left(2-\frac{r}{a}\right)^{2} e^{-r / a} .
$$

(d) Let $x=r / a$. Then

$$
\begin{aligned}
\int_{0}^{\infty} P_{200}(r) d r & =\int_{0}^{\infty} \frac{r^{2}}{8 a^{3}}\left(2-\frac{r}{a}\right)^{2} e^{-r / a} d r=\frac{1}{8} \int_{0}^{\infty} x^{2}(2-x)^{2} e^{-x} d x=\int_{0}^{\infty}\left(x^{4}-4 x^{3}+4 x^{2}\right) e^{-x} d x \\
& =\frac{1}{8}[4!-4(3!)+4(2!)]=1
\end{aligned}
$$

where we have used the integral formula $\mathbb{x}^{n} e^{-x} d x=n!$.
\# 28. (a) We use Eq. 39-44. At $r=0, P(r) \propto r^{2}=0$.
(b) At $r=1.5 a, P(r)=\frac{4}{a^{3}}(1.5 a)^{2} e^{-3 a / a}=\frac{9 e^{-3}}{a}=\frac{9 e^{-3}}{5.29 \times 10^{-2} \mathrm{~nm}}=8.47 \mathrm{~nm}^{-1}$.
(c) At $r=3 a, P(r)=\frac{4}{a^{3}}(3 a)^{2} e^{-6 a / a}=\frac{36 e^{-6}}{a}=\frac{36 e^{-6}}{5.29 \times 10^{-2} \mathrm{~nm}}=1.69 \mathrm{~nm}^{-1}$.
\# 35. THINK The ground state of the hydrogen atom corresponds to $n=1,1=0$, and $m_{1}=0$.

EXPRESS The proposed wave function is

$$
\psi=\frac{1}{\sqrt{\pi} a^{3 / 2}} e^{-r / a}
$$

where a is the Bohr radius. Substituting this into the right side of Schrödinger's equation, our goal is to show that the result is zero.

ANALYZE The derivative is

$$
\frac{d \psi}{d r}=-\frac{1}{\sqrt{\pi} a^{5 / 2}} e^{-r / a}
$$

so

$$
r^{2} \frac{d \psi}{d r}=-\frac{r^{2}}{\sqrt{\pi} a^{5 / 2}} e^{-r / a}
$$

and

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \psi}{d r}\right)=\frac{1}{\sqrt{\pi} a^{5 / 2}}\left[-\frac{2}{r}+\frac{1}{a}\right] e^{-r / a}=\frac{1}{a}\left[-\frac{2}{r}+\frac{1}{a}\right] \psi .
$$

The energy of the ground state is given by $E=-m e^{4} / 8 \varepsilon_{0}^{2} h^{2}$ and the Bohr radius is given by $a=h^{2} \varepsilon_{0} / \pi m e^{2}$, so $E=-e^{2} / 8 \pi \varepsilon_{0} a$. The potential energy is given by

$$
U=-e^{2} / 4 \pi \varepsilon_{0} r,
$$

so

$$
\begin{aligned}
\frac{8 \pi^{2} m}{h^{2}}[E-U] \psi & =\frac{8 \pi^{2} m}{h^{2}}\left[-\frac{e^{2}}{8 \pi \varepsilon_{0} a}+\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right] \psi=\frac{8 \pi^{2} m}{h^{2}} \frac{e^{2}}{8 \pi \varepsilon_{0}}\left[-\frac{1}{a}+\frac{2}{r}\right] \psi \\
& =\frac{\pi m e^{2}}{h^{2} \varepsilon_{0}}\left[-\frac{1}{a}+\frac{2}{r}\right] \psi=\frac{1}{a}\left[-\frac{1}{a}+\frac{2}{r}\right] \psi .
\end{aligned}
$$

The two terms in Schrödinger's equation cancel, and the proposed function ψ satisfies that equation.

LEARN The radial probability density of the ground state of hydrogen atom is given by Eq. 3944:

$$
P(r)=|\psi|^{2}\left(4 \pi r^{2}\right)=\frac{1}{\pi a^{3}} e^{-2 r / a}\left(4 \pi r^{2}\right)=\frac{4}{a^{3}} r^{2} e^{-2 r / a} .
$$

A plot of $P(r)$ is shown in Fig. 39-20.

