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# 9. The discussion on the probability of detection for the one-dimensional case can be readily
extended to two dimensions. In analogy to Eg. 39-10, the normalized wave function in two
dimensions can be written as

an,ny (X’ y) = an (X)Wny (y) :|: ’%Sln(nﬁf XJ:|[ ’%Sln(nlij y]}
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The probability of detection by a probe of dimension Ax Ay placed at (X, y) is
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With L, =L, =L =200 pmand Ax=Ay=4.00 pm, the probability of detecting an electron in
(n,,n,) = (1,3) state by placing a probe at (0.200L, 0.800L) is
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= 4(4'00 pm} sin”(0.2007 )sin®(2.407)=5.0x10"*.
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#11. Using E=hc/ A =(1240eV-nm)/A, the energies associated with 1,, 4, and A, are

3 E _1240eV-nm
& A1 14.588 nm

£ _hc _1240eV-nm
® ], 4.8437nm

_hc _1240eV-nm
° Z  2.9108nm

C

=85.00eV
=256.0eV

=426.0eV.
The ground-state energy is

E,=E,—E, =450.0eV-426.0eV =24.0eV .

Since E, =E, —E,, the energy of the first excited state is

E,=E +E, =24.0eV+85.0eV =109¢eV.
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# 15. (a) The plot shown below for |y200(r)|? is to be compared with the dot plot of Fig.

39-21. We note that the horizontal axis of our graph is labeled “r,” but it is actually r/a (that is, it
is in units of the parameter a). Now, in the plot below there is a high central peak between r =0
and r ~ 2a, corresponding to the densely dotted region around the center of the dot plot of Fig.
39-21. Outside this peak is a region of near-zero values centered at r = 2a, where a0 = 0. This
is represented in the dot plot by the empty ring surrounding the central peak. Further outside is a
broader, flatter, low peak that reaches its maximum value at r = 4a. This corresponds to the outer
ring with near-uniform dot density, which is lower than that of the central peak.
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(b) The extrema of yA(r) for 0 < r < oo may be found by squaring the given function,
differentiating with respect to r, and setting the result equal to zero:

_i(r_za) (r_4a) e—r/a —

0
32 atr

which has roots at r = 2a and r = 4a. We can verify directly from the plot above that r = 4a is
indeed a local maximum of 5, (r). As discussed in part (a), the other root (r = 2a) is a local
minimum.

(c) Using Eq. 39-43 and Eq. 39-41, the radial probability is

r? r\
Poo(r) =4nr’yl (N=—2-—| e
00 (1) Wano(T) 8a3( a]

(d) Letx =r/a. Then

® o 12 . Lo, o . 3 L
Io Poo (1) dr = . @(Z—EJ e dr=§jo X“(2-x)e dX=J‘0 (X" —=4x7+4x")e “dx

:%[4!-4(3!)+4(2!)]:1

where we have used the integral formula Z(“e‘xdx =n!,
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# 28. (a) We use Eq. 39-44. Atr=0, P(r) < r* = 0.

4 ge® 9e®
b) Atr=1.5a, P(r)=— (1.5a)%e %% = = =8.47nm™.
(b) (r) a3( ) a 5.29x102nm
4 2 ewa 36€7° 36e°° .
c)Atr=3a, P(r)=—(3a) e®? = = =1.69nm™.
© (r)=—(32) a 5.29x107% nm

a
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# 35. THINK The ground state of the hydrogen atom correspondston=1, 1 =0, and m, =0.

EXPRESS The proposed wave function is
1

e—r/a
7[&13/2

where a is the Bohr radius. Substituting this into the right side of Schrédinger’s equation, our
goal is to show that the result is zero.

ANALYZE The derivative is

dv__ 1
dr Jra®?
SO
r2 d_‘// __ r? ov/a
dr 7[8.5/2
and

ii(er—V/j_ 1 |:_g+£j|e_r/a—l|:_g+l:|
rPdr dr) Jza¥?| r a al v al”

The energy of the ground state is given by E = —me“/&sgh2 and the Bohr radius is given by
a=h’g,/7me®, so E = —e*/8x¢,a. The potential energy is given by

U =-e’/4ze,r,

87°m 87°m e’ e’ 87°m e? 1 2
~5[E-Uly ==~ + =77 a_ | TV
h h 8rg,a  Arng,r h® 8zs, a r

nmez{ 1 2} 1[ 1 2}
he, | a r al a r

The two terms in Schrédinger’s equation cancel, and the proposed function  satisfies that
equation.

SO

LEARN The radial probability density of the ground state of hydrogen atom is given by Eq. 39-
44

P(r) =|y | (4nr?) = %em (4r1?) = % e 2o,

A plot of P(r) is shown in Fig. 39-20.



