Chapter 29

\# 6. (a) To find the magnitude of the field, we use Eq. 29-9 for each semicircle ($\phi=\pi \mathrm{rad}$), and use superposition to obtain the result:

$$
\begin{aligned}
B & =\frac{\mu_{0} i \pi}{4 \pi a}+\frac{\mu_{0} i \pi}{4 \pi b}=\frac{\mu_{0} i}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(0.0333 \mathrm{~A})}{4}\left(\frac{1}{0.0572 \mathrm{~m}}+\frac{1}{0.0936 \mathrm{~m}}\right) \\
& =2.95 \times 10^{-7} \mathrm{~T}
\end{aligned}
$$

(b) By the right-hand rule, \vec{B} points into the paper at P (see Fig. 29-7(c)).
(c) The enclosed area is $A=\left(\pi a^{2}+\pi b^{2}\right) / 2$, which means the magnetic dipole moment has magnitude

$$
|\vec{\mu}|=\frac{\pi i}{2}\left(a^{2}+b^{2}\right)=\frac{\pi(0.0333 \mathrm{~A})}{2}\left[(0.0572 \mathrm{~m})^{2}+(0.0936 \mathrm{~m})^{2}\right]=6.29 \times 10^{-4} \mathrm{~A} \cdot \mathrm{~m}^{2} .
$$

(d) The direction of $\vec{\mu}$ is the same as the \vec{B} found in part (a): into the paper.
\# 12. THINK We apply the Biot-Savart law to calculate the magnetic field at point P_{2}. An integral is required since the length of the wire is finite.

EXPRESS We take the x axis to be along the wire with the origin at the right endpoint. The current is in the $+x$ direction. All segments of the wire produce magnetic fields at P_{2} that are out of the page. According to the Biot-Savart law, the magnitude of the field any (infinitesimal) segment produces at P_{2} is given by

$$
d B=\frac{\mu_{0} i}{4 \pi} \frac{\sin \theta}{r^{2}} d x
$$

where θ (the angle between the segment and a line drawn from the segment to P_{2}) and r (the length of that line) are functions of x. Replacing r with $\sqrt{x^{2}+R^{2}}$ and $\sin \theta$ with $R / r=R / \sqrt{x^{2}+R^{2}}$, we integrate from $x=-L$ to $x=0$.

ANALYZE The total field is

$$
\begin{aligned}
B & =\frac{\mu_{0} i R}{4 \pi} \int_{-L}^{0} \frac{d x}{\left(x^{2}+R^{2}\right)^{3 / 2}}=\left.\frac{\mu_{0} i R}{4 \pi} \frac{1}{R^{2}} \frac{x}{\left(x^{2}+R^{2}\right)^{1 / 2}}\right|_{-L} ^{0}=\frac{\mu_{0} i}{4 \pi R} \frac{L}{\sqrt{L^{2}+R^{2}}} \\
& =\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(0.880 \mathrm{~A})}{4 \pi(0.136 \mathrm{~m})} \frac{0.250 \mathrm{~m}}{\sqrt{(0.250 \mathrm{~m})^{2}+(0.136 \mathrm{~m})^{2}}}=5.68 \times 10^{-7} \mathrm{~T} .
\end{aligned}
$$

LEARN In calculating B at P_{2}, we could have chosen the origin to be at the left endpoint. This only changes the integration limit, but the result remains the same:

$$
B=\frac{\mu_{0} i R}{4 \pi} \int_{0}^{L} \frac{d x}{\left(x^{2}+R^{2}\right)^{3 / 2}}=\left.\frac{\mu_{0} i R}{4 \pi} \frac{1}{R^{2}} \frac{x}{\left(x^{2}+R^{2}\right)^{1 / 2}}\right|_{0} ^{L}=\frac{\mu_{0} i}{4 \pi R} \frac{L}{\sqrt{L^{2}+R^{2}}} .
$$

43. THINK The hollow conductor has cylindrical symmetry, so Ampere's law can be applied to calculate the magnetic field due to the current distribution.

EXPRESS Ampere's law states that $\int \mathfrak{\int} \cdot d \vec{s}=\mu_{0} i_{\text {enc }}$, where $i_{\text {enc }}$ is the current enclosed by the closed path, or Amperian loop. We choose the Amperian loop to be a circle of radius r and concentric with the cylindrical shell. Since the current is uniformly distributed throughout the cross section of the shell, the enclosed current is

$$
i_{\mathrm{enc}}=i \frac{\pi\left(r^{2}-b^{2}\right)}{\pi\left(a^{2}-b^{2}\right)}=i\left(\frac{r^{2}-b^{2}}{a^{2}-b^{2}}\right) .
$$

ANALYZE (a) Thus, in the region $b<r<a$, we have

$$
\widehat{S}^{\mathrm{r}} B \cdot d \stackrel{r}{s}=2 \pi r B=\mu_{0} i_{\mathrm{enc}}=\mu_{0} i\left(\frac{r^{2}-b^{2}}{a^{2}-b^{2}}\right)
$$

which gives $B=\frac{\mu_{0} i}{2 \pi\left(a^{2}-b^{2}\right)}\left(\frac{r^{2}-b^{2}}{r}\right)$.
(b) At $r=a$, the magnetic field strength is

$$
\frac{\mu_{0} i}{2 \pi\left(a^{2}-b^{2}\right)}\left(\frac{a^{2}-b^{2}}{a}\right)=\frac{\mu_{0} i}{2 \pi a} .
$$

At $r=b, B r^{2}-b^{2}=0$. Finally, for $b=0$

$$
B=\frac{\mu_{0} i}{2 \pi a^{2}} \frac{r^{2}}{r}=\frac{\mu_{0} i r}{2 \pi a^{2}}
$$

which agrees with Eq. 29-20.
(c) The field is zero for $r<b$ and is equal to Eq. 29-17 for $r>a$, so this along with the result of part (a) provides a determination of B over the full range of values. The graph (with SI units understood) is shown below.

LEARN For $r<b$, the field is zero, and for $r>a$, the field decreases as $1 / r$. In the region $b<r<$ a, the field increases with r as $r-b^{2} / r$.
\# 46. The magnitudes of the forces on the sides of the rectangle that are parallel to the long straight wire (with $i_{1}=30.0 \mathrm{~A}$) are computed using Eq. 29-13, but the force on each of the sides lying perpendicular to it (along our y axis, with the origin at the top wire and $+y$ downward) would be figured by integrating as follows:

$$
F_{\perp \text { sides }}=\int_{a}^{a+b} \frac{i_{2} \mu_{0} i_{1}}{2 \pi y} d y
$$

Fortunately, these forces on the two perpendicular sides of length b cancel out. For the remaining two (parallel) sides of length L, we obtain

$$
\begin{aligned}
F & =\frac{\mu_{0} i_{1} i_{2} L}{2 \pi}\left(\frac{1}{a}-\frac{1}{a+b}\right)=\frac{\mu_{0} i_{1} i_{2} b L}{2 \pi a(a+b)} \\
& =\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(30.0 \mathrm{~A})(20.0 \mathrm{~A})\left(8.00 \times 10^{-2} \mathrm{~m}\right)\left(30.0 \times 10^{-2} \mathrm{~m}\right)}{2 \pi\left(2.00 \times 10^{-2} \mathrm{~m}\right)\left(2.00 \times 10^{-2} \mathrm{~m}+8.00 \times 10^{-2} \mathrm{~m}\right)}=1.44 \times 10^{-3} \mathrm{~N}
\end{aligned}
$$

and \vec{F} points toward the wire, or $+\hat{\mathrm{j}}$. That is, $\vec{F}=\left(1.44 \times 10^{-3} \mathrm{~N}\right) \hat{\mathrm{j}}$ in unit-vector notation.
\# 53. (a) The field in this region is entirely due to the long wire (with, presumably, negligible thickness). Using Eq. 29-17,

$$
|\vec{B}|=\frac{\mu_{0} i_{w}}{2 \pi r}=4.8 \times 10^{-3} \mathrm{~T}
$$

where $i_{w}=24 \mathrm{~A}$ and $r=0.0010 \mathrm{~m}$.
(b) Now the field consists of two contributions (which are anti-parallel) - from the wire (Eq. 29-17) and from a portion of the conductor (Eq. 29-20 modified for annular area):

$$
|\vec{B}|=\frac{\mu_{0} i_{w}}{2 \pi r}-\frac{\mu_{0} i_{\mathrm{enc}}}{2 \pi r}=\frac{\mu_{0} i_{w}}{2 \pi r}-\frac{\mu_{0} i_{c}}{2 \pi r}\left(\frac{\pi r^{2}-\pi R_{i}^{2}}{\pi R_{0}^{2}-\pi R_{i}^{2}}\right)
$$

where $r=0.0030 \mathrm{~m}, R_{i}=0.0020 \mathrm{~m}, R_{o}=0.0040 \mathrm{~m}$, and $i_{c}=24 \mathrm{~A}$. Thus, we find $|\vec{B}|=9.3 \times 10^{-4} \mathrm{~T}$.
(c) Now, in the external region, the individual fields from the two conductors cancel completely (since $i_{c}=i_{w}$): $\vec{B}=0$.
\# 60. (a) Recalling the straight sections discussion in Sample Problem 29.01 - "Magnetic field at the center of a circular arc of current," we see that the current in segments $A H$ and $J D$ do not contribute to the field at point C. Using Eq. 29-9 (with $\phi=\pi$) and the right-hand rule, we find that the current in the semicircular arc $H J$ contributes $\mu_{0} i / 4 R_{1}$ (into the page) to the field at C. Also, arc $D A$ contributes $\mu_{0} i / 4 R_{2}$ (out of the page) to the field there. Thus, the net field at C is

$$
\begin{aligned}
B & =\frac{\mu_{0} i}{4}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& =\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(0.593 \mathrm{~A})}{4}\left(\frac{1}{0.0200 \mathrm{~m}}-\frac{1}{0.0780 \mathrm{~m}}\right)=6.93 \times 10^{-6} \mathrm{~T}
\end{aligned}
$$

(b) The direction of the field is into the page.

