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Chapter 29 
 

# 6. (a) To find the magnitude of the field, we use Eq. 29-9 for each semicircle ( =  rad), and 

use superposition to obtain the result: 
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(b) By the right-hand rule, 

B  points into the paper at P (see Fig. 29-7(c)). 

 

(c) The enclosed area is 2 2( ) / 2,A a b = +  which means the magnetic dipole moment has 

magnitude 
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(d) The direction of 

  is the same as the 


B  found in part (a): into the paper.  
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# 12. THINK We apply the Biot-Savart law to calculate the magnetic field at point P2. An 

integral is required since the length of the wire is finite.  

 

EXPRESS We take the x axis to be along the wire with the origin at the right endpoint. The 

current is in the +x direction. All segments of the wire produce magnetic fields at P2 that are out 

of the page. According to the Biot-Savart law, the magnitude of the field any (infinitesimal) 

segment produces at P2 is given by  

 

0

2

sin

4

i
dB dx

r

 


=  

 

where  (the angle between the segment and a line drawn from the segment to P2) and r (the 

length of that line) are functions of x. Replacing r with x R2 2+  and sin  with 

R r R x R= +2 2 , we integrate from x = –L to x = 0.  

 

ANALYZE The total field is 
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LEARN In calculating B at P2, we could have chosen the origin to be at the left endpoint. This 

only changes the integration limit, but the result remains the same: 
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43. THINK The hollow conductor has cylindrical symmetry, so Ampere’s law can be applied to 

calculate the magnetic field due to the current distribution.   

 

EXPRESS Ampere’s law states that 0 enc ,B ds i = where 
enci  is the current enclosed by the 

closed path, or Amperian loop. We choose the Amperian loop to be a circle of radius r and 

concentric with the cylindrical shell. Since the current is uniformly distributed throughout the 

cross section of the shell, the enclosed current is 

 
2 2 2 2

enc 2 2 2 2

r b r b
i i i

a b a b





 ( − ) −
= =  

( − ) − 
. 

 

ANALYZE (a) Thus, in the region b < r < a, we have 
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(b) At r = a, the magnetic field strength is 
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At r b B r b= − =, 
2 2 0 . Finally, for b = 0 

 
2

0 0

2 22 2

i irr
B

a r a

 

 
= =  

 

which agrees with Eq. 29-20. 

 

(c) The field is zero for r < b and is equal to Eq. 29-17 for r > a, so this along with the result of 

part (a) provides a determination of B over the full range of values. The graph (with SI units 

understood) is shown below. 
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LEARN For r < b, the field is zero, and for r > a, the field decreases as 1/r. In the region b < r < 

a, the field increases with r as 2 / .r b r−    
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# 46. The magnitudes of the forces on the sides of the rectangle that are parallel to the long 

straight wire (with i1 = 30.0 A) are computed using Eq. 29-13, but the force on each of the sides 

lying perpendicular to it (along our y axis, with the origin at the top wire and +y downward) 

would be figured by integrating as follows: 

 

2 0 1
sides .

2

a b

a

i i
F dy

y





+

⊥ =   

 

Fortunately, these forces on the two perpendicular sides of length b cancel out. For the remaining 

two (parallel) sides of length L, we obtain 
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and 

F  points toward the wire, or ĵ+ . That is, 

3 ˆ(1.44 10 N) jF −=   in unit-vector notation.  
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# 53. (a) The field in this region is entirely due to the long wire (with, presumably, negligible 

thickness). Using Eq. 29-17, 
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where iw = 24 A and r = 0.0010 m. 

 

(b) Now the field consists of two contributions (which are anti-parallel) — from the wire (Eq. 

29-17) and from a portion of the conductor (Eq. 29-20 modified for annular area): 
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where r = 0.0030 m, Ri = 0.0020 m, Ro = 0.0040 m, and ic = 24 A. Thus, we find 
4| | 9.3 10 T.B −=   

 

(c) Now, in the external region, the individual fields from the two conductors cancel completely 

(since ic = iw): 

B = 0.  
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# 60. (a) Recalling the straight sections discussion in Sample Problem 29.01 — “Magnetic field 

at the center of a circular arc of current,” we see that the current in segments AH and JD do not 

contribute to the field at point C. Using Eq. 29-9 (with  = ) and the right-hand rule, we find 

that the current in the semicircular arc H J contributes 0 14i R  (into the page) to the field at C. 

Also, arc D A contributes 0 24i R  (out of the page) to the field there. Thus, the net field at C is  
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(b) The direction of the field is into the page. 


