6. (a) By symmetry, when the two batteries are connected in parallel the current i going through either one is the same. So from $\varepsilon=\operatorname{ir}+(2 i) R$ with $r=0.200 \Omega$ and $R=2.00 r$, we get

$$
i_{R}=2 i=\frac{2 \varepsilon}{r+2 R}=\frac{2(10.0 \mathrm{~V})}{0.200 \Omega+2(0.400 \Omega)}=20.0 \mathrm{~A} .
$$

(b) When connected in series $2 \varepsilon-i_{R} r-i_{R} r-i_{R} R=0$, or $i_{R}=2 d(2 r+R)$. The result is

$$
i_{R}=2 i=\frac{2 \varepsilon}{2 r+R}=\frac{2(10.0 \mathrm{~V})}{2(0.200 \Omega)+0.400 \Omega}=25.0 \mathrm{~A} .
$$

(c) They are in series arrangement, since $R>r$.
(d) If $R=r / 2.00$, then for parallel connection,

$$
i_{R}=2 i=\frac{2 \varepsilon}{r+2 R}=\frac{2(10.0 \mathrm{~V})}{0.200 \Omega+2(0.100 \Omega)}=50.0 \mathrm{~A} .
$$

(e) For series connection, we have

$$
i_{R}=2 i=\frac{2 \varepsilon}{2 r+R}=\frac{2(10.0 \mathrm{~V})}{2(0.200 \Omega)+0.100 \Omega}=40.0 \mathrm{~A} .
$$

(f) They are in parallel arrangement, since $R<r$.
19. First, we note in V_{4}, that the voltage across R_{4} is equal to the sum of the voltages across R_{5} and R_{6} :

$$
V_{4}=i_{6}\left(R_{5}+R_{6}\right)=(2.80 \mathrm{~A})(8.00 \Omega+4.00 \Omega)=33.6 \mathrm{~V} .
$$

The current through R_{4} is then equal to $i_{4}=V_{4} / R_{4}=(33.6 \mathrm{~V}) /(16.0 \Omega)=2.10 \mathrm{~A}$. By the junction rule, the current in R_{2} is

$$
i_{2}=i_{4}+i_{6}=2.10 \mathrm{~A}+2.80 \mathrm{~A}=4.90 \mathrm{~A} \text {, }
$$

so its voltage is

$$
V_{2}=(2.00 \Omega)(4.90 \mathrm{~A})=9.80 \mathrm{~V} .
$$

The loop rule tells us the voltage across R_{3} is $V_{3}=V_{2}+V_{4}=9.80 \mathrm{~V}+33.6 \mathrm{~V}=43.4 \mathrm{~V}$, implying that the current through it is $i_{3}=V_{3} /(2.00 \Omega)=21.7 \mathrm{~A}$. The junction rule now gives the current in R_{1} as

$$
i_{1}=i_{2}+i_{3}=4.90 \mathrm{~A}+21.7 \mathrm{~A}=26.6 \mathrm{~A},
$$

implying that the voltage across it is $V_{1}=(26.6 \mathrm{~A})(2.00 \Omega)=53.2 \mathrm{~V}$. Therefore, by the loop rule,

$$
\varepsilon=V_{1}+V_{3}=53.2 \mathrm{~V}+43.4 \mathrm{~V}=96.6 \mathrm{~V}
$$

29. Let i_{1} be the current in R_{1} and R_{2}, and take it to be positive if it is toward point a in R_{1}. Let i_{2} be the current in R_{s} and R_{x}, and take it to be positive if it is toward b in R_{s}. The loop rule yields $\left(R_{1}+R_{2}\right) i_{1}-\left(R_{x}+R_{s}\right) i_{2}=0$. Since points a and b are at the same potential, $i_{1} R_{1}=i_{2} R_{s}$. The second equation gives $i_{2}=i_{1} R_{1} / R_{s}$, which is substituted into the first equation to obtain

$$
\left(R_{1}+R_{2}\right) i_{1}=\left(R_{x}+R_{s}\right) \frac{R_{1}}{R_{s}} i_{1} \Rightarrow R_{x}=\frac{R_{2} R_{s}}{R_{1}} .
$$

38. The currents in R and R_{V} are i and $i^{\prime}-i$, respectively. Since $V=i R=\left(i^{\prime}-i\right) R_{V}$ we have, by dividing both sides by $V, 1=\left(i^{\prime} / V-i / V\right) R_{V}=\left(1 / R^{\prime}-1 / R\right) R_{V}$. Thus,

$$
\frac{1}{R}=\frac{1}{R^{\prime}}-\frac{1}{R_{V}} \Rightarrow R^{\prime}=\frac{R R_{V}}{R+R_{V}} .
$$

The equivalent resistance of the circuit is $R_{\text {eq }}=R_{A}+R_{0}+R^{\prime}=R_{A}+R_{0}+\frac{R R_{V}}{R+R_{V}}$.
(a) The ammeter reading is

$$
\begin{aligned}
i^{\prime} & =\frac{\varepsilon}{R_{\mathrm{eq}}}=\frac{\varepsilon}{R_{A}+R_{0}+R_{V} R /\left(R+R_{V}\right)}=\frac{28.5 \mathrm{~V}}{3.00 \Omega+100 \Omega+(300 \Omega)(85.0 \Omega) /(300 \Omega+85.0 \Omega)} \\
& =0.168 \mathrm{~A} .
\end{aligned}
$$

(b) The voltmeter reading is

$$
V=\varepsilon-i^{\prime}\left(R_{A}+R_{0}\right)=28.5 \mathrm{~V}-(0.168 \mathrm{~A})(103.00 \Omega)=11.2 \mathrm{~V} .
$$

(c) The apparent resistance is $R^{\prime}=V / i^{\prime}=(11.2 \mathrm{~V}) /(0.168 \mathrm{~A})=66.2 \Omega$.
(d) If R_{V} is increased, the difference between R and R^{\prime} decreases. In fact, $R^{\prime} \rightarrow R$ as $R_{V} \rightarrow \infty$.
42. The current in the circuit is

$$
i=(150 \mathrm{~V}-50 \mathrm{~V}) /(3.0 \Omega+2.0 \Omega)=20 \mathrm{~A} .
$$

So from $V_{Q}+150 \mathrm{~V}-(2.0 \Omega) i=V_{P}$, we get

$$
V_{Q}=100 \mathrm{~V}+(2.0 \Omega)(20 \mathrm{~A})-150 \mathrm{~V}=-10 \mathrm{~V} .
$$

47. THINK We have a multi-loop circuit with a capacitor that's being charged. Since at t $=0$ the capacitor is completely uncharged, the current in the capacitor branch is as it would be if the capacitor were replaced by a wire.

EXPRESS Let i_{1} be the current in R_{1} and take it to be positive if it is to the right. Let i_{2} be the current in R_{2} and take it to be positive if it is downward. Let i_{3} be the current in R_{3} and take it to be positive if it is downward. The junction rule produces $i_{1}=i_{2}+i_{3}$, the loop rule applied to the left-hand loop produces

$$
\varepsilon-i_{1} R_{1}-i_{2} R_{2}=0
$$

and the loop rule applied to the right-hand loop produces

$$
i_{2} R_{2}-i_{3} R_{3}=0 .
$$

Since the resistances are all the same we can simplify the mathematics by replacing R_{1}, R_{2}, and R_{3} with R.

ANALYZE (a) Solving the three simultaneous equations, we find

$$
i_{1}=\frac{2 \varepsilon}{3 R}=\frac{2\left(1.2 \times 10^{3} \mathrm{~V}\right)}{3\left(0.73 \times 10^{6} \Omega\right)}=1.1 \times 10^{-3} \mathrm{~A},
$$

(b) $i_{2}=\frac{\varepsilon}{3 R}=\frac{1.2 \times 10^{3} \mathrm{~V}}{3\left(0.73 \times 10^{6} \Omega\right)}=5.5 \times 10^{-4} \mathrm{~A}$,
(c) and $i_{3}=i_{2}=5.5 \times 10^{-4} \mathrm{~A}$.

At $t=\infty$ the capacitor is fully charged and the current in the capacitor branch is 0 . Thus, $i_{1}=i_{2}$, and the loop rule yields $\varepsilon-i_{1} R_{1}-i_{1} R_{2}=0$.
(d) The solution is $i_{1}=\frac{\varepsilon}{2 R}=\frac{1.2 \times 10^{3} \mathrm{~V}}{2\left(0.73 \times 10^{6} \Omega\right)}=8.2 \times 10^{-4} \mathrm{~A}$
(e) and $i_{2}=i_{1}=8.2 \times 10^{-4} \mathrm{~A}$.
(f) As stated before, the current in the capacitor branch is $i_{3}=0$.

We take the upper plate of the capacitor to be positive. This is consistent with current flowing into that plate. The junction equation is $i_{1}=i_{2}+i_{3}$, and the loop equations are

$$
\begin{aligned}
\varepsilon-i_{1} R-i_{2} R & =0 \\
-\frac{q}{C}-i_{3} R+i_{2} R & =0 .
\end{aligned}
$$

We use the first equation to substitute for i_{1} in the second and obtain

$$
\varepsilon-2 i_{2} R-i_{3} R=0 .
$$

Thus $i_{2}=\left(\varepsilon-i_{3} R\right) / 2 R$. We substitute this expression into the third equation above to obtain

$$
-(q / C)-\left(i_{3} R\right)+(\varepsilon / 2)-\left(i_{3} R / 2\right)=0 .
$$

Now we replace i_{3} with $d q / d t$ to obtain

$$
\frac{3 R}{2} \frac{d q}{d t}+\frac{q}{C}=\frac{\varepsilon}{2} .
$$

This is just like the equation for an $R C$ series circuit, except that the time constant is $\tau=$ $3 R C / 2$ and the impressed potential difference is $\varepsilon / 2$. The solution is

$$
q=\frac{C \varepsilon}{2}\left(1-e^{-2 t / \beta R C}\right) .
$$

The current in the capacitor branch is

$$
i_{3}(t)=\frac{d q}{d t}=\frac{\varepsilon}{3 R} e^{-2 t / 3 R C} .
$$

The current in the center branch is

$$
i_{2}(t)=\frac{\varepsilon}{2 R}-\frac{i_{3}}{2}=\frac{\varepsilon}{2 R}-\frac{\varepsilon}{6 R} e^{-2 t / 3 R C}=\frac{\varepsilon}{6 R}\left(3-e^{-2 t / 3 R C}\right)
$$

and the potential difference across R_{2} is $V_{2}(t)=i_{2} R=\frac{\varepsilon}{6}\left(3-e^{-2 t / 3 R C}\right)$.
(g) For $t=0, e^{-2 t / 3 R C}=1$ and $V_{2}=\varepsilon / 3=\left(1.2 \times 10^{3} \mathrm{~V}\right) / 3=4.0 \times 10^{2} \mathrm{~V}$.
(h) For $t=\infty, e^{-2 t / 3 R C} \rightarrow 0$ and $V_{2}=\varepsilon / 2=\left(1.2 \times 20^{3} \mathrm{~V}\right) / 2=6.0 \times 10^{2} \mathrm{~V}$.
(i) A plot of V_{2} as a function of time is shown in the following graph.

LEARN A capacitor that is being charged initially behaves like an ordinary connecting wire relative to the charging current. However, a long time later after it's fully charged, it acts like a broken wire.

