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Chapter 38 
 

# 6. (a) For the first and second case (labeled 1 and 2) we have  

 

eV01 = hc/1 –  ,     eV02 = hc/2 – , 

 

from which h and  can be determined. Thus, 
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(b) The work function is 
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(c) Let  = hc/max to obtain 
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# 7. The initial energy of the photon is (using hc = 1240 eV·nm) 
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Using Eq. 38-11 (applied to an electron), the Compton shift is given by 
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Therefore, the new photon wavelength is  

 

' = 4.00 pm + 2.43 pm = 6.43 pm. 

 

Consequently, the new photon energy is 
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By energy conservation, then, the kinetic energy of the electron must be equal to  
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# 9. THINK In this problem we solve a special case of the Schrödinger’s equation where the 

potential energy is 0( ) constant.U x U= =    

 

EXPRESS For U = U0, Schrödinger’s equation becomes 
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We substitute  = 0e
ikx .   

 

ANALYZE The second derivative is 
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Solving for k, we obtain 
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LEARN Another way to realize this is to note that with a constant potential energy 0( ) ,U x U=  

we can simply redefine the total energy as 0 ,E E U = −  and the Schrödinger’s equation looks 

just like the free-particle case: 
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The solution is 0 exp( ),ik x  =  where  
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# 10. We use the uncertainty relationship  x p   . Letting x = , the de Broglie wavelength, 

we solve for the minimum uncertainty in p: 
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where the de Broglie relationship p = h/ is used. We use 1/2 = 0.080 to obtain p = 0.080p. 

We would expect the measured value of the momentum to lie between 0.92p and 1.08p. 

Measured values of zero, 0.5p, and 2p would all be surprising. 
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# 27. (a) We calculate frequencies from the wavelengths (expressed in SI units) using Eq. 38-1. 

Our plot of the points and the line that gives the least squares fit to the data is shown below. The 

vertical axis is in volts and the horizontal axis, when multiplied by 1014, gives the frequencies in 

Hertz. 

 

From our least squares fit procedure, we determine the slope to be 4.14  10–15 V·s, which, upon 

multiplying by e, gives 4.14  10–15 eV·s. The result is in very good agreement with the value 

given in Eq. 38-3. 

 

 
 

(b) Our least squares fit procedure can also determine the y-intercept for that line. The y-intercept 

is the negative of the photoelectric work function. In this way, we find  = 2.31 eV. 


