Chapter 28

\# 11. (a) We seek the electrostatic field established by the separation of charges (brought on by the magnetic force). With Eq. 28-10, we define the magnitude of the electric field as

$$
|\vec{E}|=v|\vec{B}|=(27.0 \mathrm{~m} / \mathrm{s})(0.0375 \mathrm{~T})=1.01 \mathrm{~V} / \mathrm{m} .
$$

Its direction may be inferred from Figure 28-8; its direction is opposite to that defined by $\vec{v} \times \vec{B}$. In summary,

$$
\vec{E}=-(1.01 \mathrm{~V} / \mathrm{m}) \hat{\mathrm{k}}
$$

which insures that $\vec{F}=q \boldsymbol{d}+\vec{v} \times \vec{B} \boldsymbol{\|}$ vanishes.
(b) Equation 28-9 yields $V=E d=(1.01 \mathrm{~V} / \mathrm{m})\left(3.00 \times 10^{-2} \mathrm{~m}\right)=3.04 \times 10^{-2} \mathrm{~V}$.
\# 12. We note that \vec{B} must be along the x axis because when the velocity is along that axis there is no induced voltage. Combining Eq. 28-7 and Eq. 28-9 leads to

$$
d=\frac{V}{E}=\frac{V}{v B}
$$

where one must interpret the symbols carefully to ensure that \vec{d}, \vec{v}, and \vec{B} are mutually perpendicular. Thus, when the velocity if parallel to the y axis the absolute value of the voltage (which is considered in the same "direction" as \vec{d}) is 0.012 V , and

$$
d=d_{z}=\frac{0.012 \mathrm{~V}}{(5.0 \mathrm{~m} / \mathrm{s})(0.020 \mathrm{~T})}=0.12 \mathrm{~m} .
$$

On the other hand, when the velocity is parallel to the z axis the absolute value of the appropriate voltage is 0.018 V , and

$$
d=d_{y}=\frac{0.018 \mathrm{~V}}{(5.0 \mathrm{~m} / \mathrm{s})(0.020 \mathrm{~T})}=0.18 \mathrm{~m} .
$$

Thus, our answers are
(a) $d_{x}=25 \mathrm{~cm}$ (which we arrive at "by elimination," since we already have figured out d_{y} and d_{z}),
(b) $d_{y}=18 \mathrm{~cm}$, and
(c) $d_{z}=12 \mathrm{~cm}$.
\# 13. We consider the point at which it enters the field-filled region, velocity vector pointing downward. The field points out of the page so that $\vec{v} \times \vec{B}$ points leftward, which indeed seems to be the direction it is "pushed"; therefore, $q>0$ (it is a proton).
(a) Equation 28-17 becomes $T=2 \pi m_{\mathrm{p}} / e|\vec{B}|$, or

$$
2\left(212 \times 10^{-9}\right)=\frac{2 \pi\left(1.67 \times 10^{-27}\right)}{\left(1.60 \times 10^{-19}\right)|\vec{B}|}
$$

which yields $|\vec{B}|=0.155 \mathrm{~T}$.
(b) Doubling the kinetic energy implies multiplying the speed by $\sqrt{2}$. Since the period T does not depend on speed, then it remains the same (even though the radius increases by a factor of $\sqrt{2}$). Thus, $t=T / 2=212 \mathrm{~ns}$.
\# 24. We use $d \vec{F}_{B}=i d \vec{L} \times \vec{B}$, where $d \vec{L}=d x \hat{\dot{i}}$ and $\vec{B}=B_{x} \hat{i}+B_{y} \hat{j}$. Thus,

$$
\begin{aligned}
\vec{F}_{B} & =\int i d \vec{L} \times \vec{B}=\int_{x_{i}}^{x_{f}} i d x \text { 닜 }\left(B_{x} \mathrm{i}+B_{y} \text { 载 }=i \int_{x_{i}}^{x_{f}} B_{y} d x \mathrm{k}\right. \\
& \left.=(-3.0 \mathrm{~A})\left(\int_{1.0}^{3.0}\left(6.0 x^{2} d x\right)(\mathrm{m} \cdot \mathrm{mT})\right)\right)^{\text {닌 }}(-0.16 \mathrm{~N}) \mathrm{k} .
\end{aligned}
$$

\# 40. Let $a=30.0 \mathrm{~cm}, b=20.0 \mathrm{~cm}$, and $c=10.0 \mathrm{~cm}$. From the given hint, we write

$$
\begin{aligned}
\vec{\mu} & =\vec{\mu}_{1}+\vec{\mu}_{2}=i a b\left(- \text { 늣 }^{2}+i a c(\mathrm{j})\right. \\
& =i a\left(c \text { 닌 }^{2} \mathrm{k}\right)=(7.80 \mathrm{~A})(0.300 \mathrm{~m})[(0.100 \mathrm{~m}) \text { 닌 }(0.200 \mathrm{~m}) \mathrm{k}] \\
& =(0.234 \text { 닌 } 0.468 \mathrm{k}) \mathrm{A} \cdot \mathrm{~m}^{2} .
\end{aligned}
$$

\# 54. (a) The magnetic force on the wire is $F_{B}=i d B$, pointing to the left. Thus

$$
\begin{aligned}
v & =a t=\frac{F_{B} t}{m}=\frac{i d B t}{m}=\frac{\left(9.13 \times 10^{-3} \mathrm{~A}\right)\left(2.56 \times 10^{-2} \mathrm{~m}\right)\left(4.20 \times 10^{-2} \mathrm{~T}\right)(0.0611 \mathrm{~s})}{3.69 \times 10^{-5} \mathrm{~kg}} \\
& =1.63 \times 10^{-2} \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

(b) The direction is to the left (away from the generator).

