3. (a) The current in each strand is $i=0.750 \mathrm{~A} / 63=1.19 \times 10^{-2} \mathrm{~A}=11.9 \mathrm{~mA}$.
(b) The potential difference is $V=i R=\left(1.19 \times 10^{-2} \mathrm{~A}\right)\left(2.65 \times 10^{-6} \Omega\right)=3.15 \times 10^{-8} \mathrm{~V}$.
(c) The resistance is $R_{\text {total }}=\left(2.65 \times 10^{-6} \Omega\right) / 63=4.21 \times 10^{-8} \Omega$.
4. (a) From $P=V^{2} / R=A V^{2} / \rho L$, we solve for the cross-sectional area:

$$
A=\frac{\rho L P}{V^{2}}=\frac{\left(5.00 \times 10^{-7} \Omega \cdot \mathrm{~m}\right)(5.85 \mathrm{~m})(4000 \mathrm{~W})}{(112 \mathrm{~V})^{2}}=9.33 \times 10^{-7} \mathrm{~m}^{2}
$$

(b) Since $L \propto V^{2}$ the new length should be

$$
L^{\prime}=L\left(\frac{V^{\prime}}{V}\right)^{2}=(5.85 \mathrm{~m})\left(\frac{100 \mathrm{~V}}{112 \mathrm{~V}}\right)^{2}=4.66 \mathrm{~m}
$$

36. Since the potential difference V and current i are related by $V=i R$, where R is the resistance of the electrician, the fatal voltage is $V=\left(50 \times 10^{-3} \mathrm{~A}\right)(2100 \Omega)=105 \mathrm{~V}$.
37. (a) The current resulting from this non-uniform current density is

$$
\begin{aligned}
i & =\int_{\text {cylinder }} J_{a} d A=\frac{J_{0}}{R} \int_{0}^{R} r \cdot 2 \pi r d r=\frac{2}{3} \pi R^{2} J_{0}=\frac{2}{3} \pi\left(2.67 \times 10^{-3} \mathrm{~m}\right)^{2}\left(5.50 \times 10^{4} \mathrm{~A} / \mathrm{m}^{2}\right) . \\
& =0.821 \mathrm{~A} .
\end{aligned}
$$

(b) In this case, we have

$$
\begin{aligned}
i & =\int_{\text {cylinder }} J_{b} d A=\int_{0}^{R} J_{0}\left(1-\frac{r}{R}\right) 2 \pi r d r=\frac{1}{3} \pi R^{2} J_{0}=\frac{1}{3} \pi\left(2.67 \times 10^{-3} \mathrm{~m}\right)^{2}\left(5.50 \times 10^{4} \mathrm{~A} / \mathrm{m}^{2}\right) \\
& =0.411 \mathrm{~A} .
\end{aligned}
$$

(c) The result is different from that in part (a) because J_{b} is higher near the center of the cylinder (where the area is smaller for the same radial interval) and lower outward, resulting in a lower average current density over the cross section and consequently a lower current than that in part (a). So, J_{a} has its maximum value near the surface of the wire.
48. (a) Since the material is the same, the resistivity ρ is the same, which implies (by Eq. 26-11) that the electric fields (in the various rods) are directly proportional to their current-densities. Thus, $J_{1}: J_{2}: J_{3}$ are in the ratio 2.5/4/1.5 (see Fig. 26-27). Now the currents in the rods must be the same (they are "in series") so

$$
J_{1} A_{1}=J_{3} A_{3}, J_{2} A_{2}=J_{3} A_{3} .
$$

Since $A=\pi r^{2}$, this leads (in view of the aforementioned ratios) to

$$
4 r_{2}^{2}=1.5 r_{3}^{2}, 2.5 r_{1}^{2}=1.5 r_{3}^{2} .
$$

Thus, with $r_{3}=1.70 \mathrm{~mm}$, the latter relation leads to $r_{1}=(1.5 / 2.5)^{1 / 2}(1.70 \mathrm{~mm})=1.32 \mathrm{~mm}$.
(b) The $4 r_{2}{ }^{2}=1.5 r_{3}{ }^{2}$ relation leads to $r_{2}=(1.5 / 4.0)^{1 / 2}(1.70 \mathrm{~mm})=104 \mathrm{~mm}$.

