## Chapter 27

\# 28. (a) The batteries are identical and, because they are connected in parallel, the potential differences across them are the same. This means the currents in them are the same. Let $i$ be the current in either battery and take it to be positive to the left. According to the junction rule the current in $R$ is $2 i$ and it is positive to the right. The loop rule applied to either loop containing a battery and $R$ yields

$$
\%-i r-2 i R=0 \Rightarrow i=\frac{\%}{r+2 R} .
$$

The power dissipated in $R$ is

$$
P=(2 i)^{2} R=\frac{4 \circ^{2} R}{(r+2 R)^{2}} .
$$

We find the maximum by setting the derivative with respect to $R$ equal to zero. The derivative is

$$
\frac{d P}{d R}=\frac{4 \%^{2}}{(r+2 R)^{3}}-\frac{16 \%^{2} R}{(r+2 R)^{3}}=\frac{4 \%^{2}(r-2 R)}{(r+2 R)^{3}} .
$$

The derivative vanishes (and $P$ is a maximum) if $R=r / 2$. With $r=0.400 \Omega$, we have $R=0.200 \Omega$.
(b) We substitute $R=r / 2$ into $P=4 \circ^{2} R /(r+2 R)^{2}$ to obtain

$$
P_{\max }=\frac{4 \%^{2}(r / 2)}{[r+2(r / 2)]^{2}}=\frac{\frac{\circ}{\circ}^{2}}{2 r}=\frac{(14.0 \mathrm{~V})^{2}}{2(0.400 \Omega)}=245 \mathrm{~W} .
$$

\# 29. (a) By symmetry, when the two batteries are connected in parallel the current $i$ going through either one is the same. So from $\%=\operatorname{ir}+(2 i) R$ with $r=0.400 \Omega$ and $R=2.00 r$, we get

$$
i_{R}=2 i=\frac{2 \%}{r+2 R}=\frac{2(12.0 \mathrm{~V})}{0.400 \Omega+2(0.800 \Omega)}=12.0 \mathrm{~A} .
$$

(b) When connected in series $2 \%-i_{R} r-i_{R} r-i_{R} R=0$, or $i_{R}=2 \% /(2 r+R)$. The result is

$$
i_{R}=2 i=\frac{2 \%}{2 r+R}=\frac{2(12.0 \mathrm{~V})}{2(0.400 \Omega)+0.800 \Omega}=15.0 \mathrm{~A} .
$$

(c) They are in series arrangement, since $R>r$.
(d) If $R=r / 2.00$, then for parallel connection,

$$
i_{R}=2 i=\frac{2 \%}{r+2 R}=\frac{2(12.0 \mathrm{~V})}{0.400 \Omega+2(0.200 \Omega)}=30.0 \mathrm{~A} .
$$

(e) For series connection, we have

$$
i_{R}=2 i=\frac{2 \%}{2 r+R}=\frac{2(12.0 \mathrm{~V})}{2(0.400 \Omega)+0.200 \Omega}=24.0 \mathrm{~A} .
$$

(f) They are in parallel arrangement, since $R<r$.
\# 30. (a) We note that the $R_{1}$ resistors occur in series pairs, contributing net resistance $2 R_{1}$ in each branch where they appear. Since $\% 2=\frac{\circ}{\circ} 3$ and $R_{2}=2 R_{1}$, from symmetry we know that the currents through $\% 2$ and $\% 3$ are the same: $i_{2}=i_{3}=i$. Therefore, the current through $\%{ }_{1}$ is $i_{1}=2 i$. Then from $V_{b}-V_{a}=\% 2-i R_{2}=\% 1+\left(2 R_{1}\right)(2 i)$ we get

$$
i=\frac{\stackrel{\circ}{2}_{2}-\circ_{1}}{4 R_{1}+R_{2}}=\frac{5.0 \mathrm{~V}-3.0 \mathrm{~V}}{4(2.0 \Omega)+4.0 \Omega}=0.32 \mathrm{~A} .
$$

Therefore, the current through ${ }^{\circ} 1$ is $i_{1}=2 i=0.64 \mathrm{~A}$.
(b) The direction of $i_{1}$ is downward.
(c) The current through $\circ_{2}$ is $i_{2}=0.14 \mathrm{~A}$.
(d) The direction of $i_{2}$ is upward.
(e) From part (a), we have $i_{3}=i_{2}=0.18 \mathrm{~A}$.
(f) The direction of $i_{3}$ is also upward.
(g) $V_{a}-V_{b}=-i R_{2}+\frac{\circ}{2}=-(0.32 \mathrm{~A})(4.0 \Omega)+4.0 \mathrm{~V}=2.7 \mathrm{~V}$.
\# 35. The current in the circuit is

$$
i=(150 \mathrm{~V}-80 \mathrm{~V}) /(4.0 \Omega+6.0 \Omega)=7.0 \mathrm{~A} .
$$

So from $V_{Q}+150 \mathrm{~V}-(6.0 \Omega) i=V_{P}$, we get

$$
V_{Q}=100 \mathrm{~V}+(6.0 \Omega)(7.0 \mathrm{~A})-150 \mathrm{~V}=-8.0 \mathrm{~V} .
$$

\# 39. In the steady state situation, the capacitor voltage will equal the voltage across $R_{2}=$ $15 \mathrm{k} \Omega$ :

$$
V_{0}=R_{2} \frac{\%}{R_{1}+R_{2}}=(15.0 \mathrm{k} \Omega)\left(\frac{20.0 \mathrm{~V}}{10.0 \mathrm{k} \Omega+15.0 \mathrm{k} \Omega}\right)=12.0 \mathrm{~V} .
$$

Now, multiplying Eq. 27-39 by the capacitance leads to $V=V_{0} e^{-t / R C}$ describing the voltage across the capacitor (and across $R_{2}=15.0 \mathrm{k} \Omega$ ) after the switch is opened (at $t=0$ ). Thus, with $t=$ 0.01400 s , we obtain

$$
V=(12) e^{-0.014 /(15000)\left(0.4 \times 10^{-6}\right)}=1.163 \mathrm{~V}
$$

Therefore, using Ohm's law, the current through $R_{2}$ is $1.163 / 15000=7.76 \times 10^{-5} \mathrm{~A}$.
\# 48. First, we note in $V_{4}$, that the voltage across $R_{4}$ is equal to the sum of the voltages across $R_{5}$ and $R_{6}$ :

$$
V_{4}=i_{6}\left(R_{5}+R_{6}\right)=(2.50 \mathrm{~A})(8.00 \Omega+4.00 \Omega)=30.0 \mathrm{~V} .
$$

The current through $R_{4}$ is then equal to $i_{4}=V_{4} / R_{4}=(30.0 \mathrm{~V}) /(16.0 \Omega)=1.88 \mathrm{~A}$.
By the junction rule, the current in $R_{2}$ is

$$
i_{2}=i_{4}+i_{6}=1.88 \mathrm{~A}+2.50 \mathrm{~A}=4.38 \mathrm{~A},
$$

so its voltage is $V_{2}=(2.00 \Omega)(4.38 \mathrm{~A})=8.75 \mathrm{~V}$.
The loop rule tells us the voltage across $R_{3}$ is $V_{3}=V_{2}+V_{4}=38.8 \mathrm{~V}$ (implying that the current through it is $\left.i_{3}=V_{3} /(2.00 \Omega)=19.38 \mathrm{~A}\right)$.

The junction rule now gives the current in $R_{1}$ as

$$
i_{1}=i_{2}+i_{3}=4.38 \mathrm{~A}+19.38 \mathrm{~A}=23.8 \mathrm{~A},
$$

implying that the voltage across it is $V_{1}=(23.8 \mathrm{~A})(2.00 \Omega)=47.5 \mathrm{~V}$. Therefore, by the loop rule,

$$
\%=V_{1}+V_{3}=47.5 \mathrm{~V}+38.8 \mathrm{~V}=86.3 \mathrm{~V}
$$

