24. In this setup, we have $n_2 < n_1$ and $n_2 > n_3$, and the condition for maximum transmission (minimum reflection) or constructive interference is

$$2L = \left(m + \frac{1}{2}\right)\frac{\lambda}{n_2} \implies L = \left(m + \frac{1}{2}\right)\frac{\lambda}{2n_2}, \quad m = 0, 1, 2, \dots$$

The second least thickness is (m = 1)

$$L = \left(1 + \frac{1}{2}\right) \frac{342 \text{ nm}}{2(1.59)} = 161 \text{ nm}.$$

25. **THINK** The formation of Newton's rings is due to the interference between the rays reflected from the flat glass plate and the curved lens surface.

EXPRESS Consider the interference pattern formed by waves reflected from the upper and lower surfaces of the air wedge. The wave reflected from the lower surface undergoes a π rad phase change while the wave reflected from the upper surface does not. At a place where the thickness of the wedge is d, the condition for a maximum in intensity is $2d = (m + \frac{1}{2})\lambda$, where λ is the wavelength in air and m is an integer. Therefore,

$$d = (2m+1)\lambda/4.$$

ANALYZE As the geometry of Fig. 35-46 shows, $d = R - \sqrt{R^2 - r^2}$, where *R* is the radius of curvature of the lens and *r* is the radius of a Newton's ring. Thus, $(2m+1)\lambda/4 = R - \sqrt{R^2 - r^2}$. First, we rearrange the terms so the equation becomes

$$\sqrt{R^2-r^2}=R-\frac{(2m+1)\lambda}{4}.$$

Next, we square both sides, rearrange to solve for r^2 , then take the square root. We get

$$r = \sqrt{\frac{(2m+1)R\lambda}{2} - \frac{(2m+1)^2\lambda^2}{16}}$$

If R is much larger than a wavelength, the first term dominates the second and

$$r = \sqrt{\frac{(2m+1)R\lambda}{2}}$$

LEARN Similarly, the radii of the dark fringes are given by $r = \sqrt{mR\lambda}$.

33. (a) We choose a horizontal x axis with its origin at the left edge of the plastic. Between x = 0 and $x = L_2$ the phase difference is that given by Eq. 35-11 (with L in that equation replaced with L_2). Between $x = L_2$ and $x = L_1$ the phase difference is given by an expression similar to Eq. 35-11 but with L replaced with $L_1 - L_2$ and n_2 replaced with 1 (since the top ray in Fig. 35-36 is now traveling through air, which has index of refraction approximately equal to 1). Thus, combining these phase differences with $\lambda = 0.600 \ \mu m$, we have

$$\frac{L_2}{\lambda}(n_2 - n_1) + \frac{L_1 - L_2}{\lambda}(1 - n_1) = \frac{3.50 \ \mu \text{m}}{0.600 \ \mu \text{m}}(1.60 - 1.42) + \frac{4.00 \ \mu \text{m} - 3.50 \ \mu \text{m}}{0.600 \ \mu \text{m}}(1 - 1.42)$$
$$= 1.05 + (-0.35) = 0.70.$$

(b) The answer in part (a) is intermediate but closer to a half-integer, so the interference is more nearly destructive than constructive.

41. The maxima of a two-slit interference pattern are at angles θ given by $d \sin \theta = m\lambda$, where d is the slit separation, λ is the wavelength, and m is an integer. If θ is small, sin θ may be replaced by θ in radians. Then, $d\theta = m\lambda$. The angular separation of two maxima associated with different wavelengths but the same value of m is

$$\Delta \theta = (m/d)(\lambda_2 - \lambda_1),$$

and their separation on a screen a distance D away is

$$\Delta y = D \tan \Delta \theta \approx D \Delta \theta = \left[\frac{mD}{d}\right] (\lambda_2 - \lambda_1) \\ = \left[\frac{3(1.8 \text{ m})}{5.0 \times 10^{-3} \text{ m}}\right] (600 \times 10^{-9} \text{ m} - 480 \times 10^{-9} \text{ m}) = 1.3 \times 10^{-4} \text{ m}.$$

The small angle approximation $\tan \Delta \theta \approx \Delta \theta$ (in radians) is made.

Quoting the answer to two significant figures, we have $y \approx 17 \sin(\omega t + 13^\circ)$.

31. In adding these with the phasor method (as opposed to, say, trig identities), we may set t = 0 and add them as vectors:

$$y_h = 10\cos 0^\circ + 15\cos 30^\circ + 5.0\cos(-45^\circ) = 26.5$$

$$y_v = 10\sin 0^\circ + 15\sin 30^\circ + 5.0\sin(-45^\circ) = 4.0$$

so that

$$y_R = \sqrt{y_h^2 + y_v^2} = 26.8 \approx 27$$

 $\beta = \tan^{-1} \left(\frac{y_v}{y_h} \right) = 8.5^\circ.$

Thus, $y = y_1 + y_2 + y_3 = y_R \sin(\omega t + \beta) = 27 \sin(\omega t + 8.5^\circ)$.

32. (a) We can use phasor techniques or use trig identities. Here we show the latter approach. Since

$$\sin a + \sin(a + b) = 2\cos(b/2)\sin(a + b/2),$$

we find

$$E_1 + E_2 = 2E_0 \cos(\phi/2) \sin(\omega t + \phi/2)$$

where $E_0 = 2.00 \ \mu\text{V/m}$, $\omega = 1.26 \times 10^{15} \text{ rad/s}$, and $\phi = 39.6 \text{ rad}$. This shows that the electric field amplitude of the resultant wave is

$$E = 2E_0 \cos(\phi/2) = 2(2.00 \ \mu \text{V/m}) \cos(19.2 \text{ rad}) = 2.33 \ \mu \text{V/m}$$
.

(b) Equation 35-22 leads to

$$I = 4I_0 \cos^2(\phi/2) = 1.35 I_0$$

at point *P*, and

$$I_{\text{center}} = 4 I_0 \cos^2(0) = 4 I_0$$

at the center. Thus, $I / I_{center} = 1.35 / 4 = 0.338$.

(c) The phase difference ϕ (in wavelengths) is gotten from ϕ in radians by dividing by 2π . Thus, $\phi = 39.6/2\pi = 6.3$ wavelengths. Thus, point *P* is between the sixth side maximum (at which $\phi = 6$ wavelengths) and the seventh minimum (at which $\phi = 6\frac{1}{2}$ wavelengths).

(d) The rate is given by $\omega = 1.26 \times 10^{15}$ rad/s.

(e) The angle between the phasors is $\phi = 39.6$ rad = 2270° (which would look like about 110° when drawn in the usual way).

33. With phasor techniques, this amounts to a vector addition problem $\vec{R} = \vec{A} + \vec{B} + \vec{C}$ where (in magnitude-angle notation) $\vec{A} = (10 \angle 0^\circ)$, $\vec{B} = (5 \angle 45^\circ)$, and $\vec{C} = (5 \angle -45^\circ)$, where the magnitudes are understood to be in μ V/m. We obtain the resultant (especially efficient on a vector-capable calculator in polar mode):

$$\vec{R} = (10 \angle 0^\circ) + (5 \angle 45^\circ) + (5 \angle -45^\circ) = (17.1 \angle 0^\circ)$$

which leads to

$$E_R = (17.1\,\mu\,\mathrm{V/m})\sin(\omega t)$$

where $\omega = 2.0 \times 10^{14}$ rad/s.

34. (a) Referring to Figure 35-10(a) makes clear that

$$\theta = \tan^{-1}(y/D) = \tan^{-1}(0.205/4) = 2.93^{\circ}.$$

Thus, the phase difference at point *P* is $\phi = d\sin\theta/\lambda = 0.397$ wavelengths, which means it is between the central maximum (zero wavelength difference) and the first minimum ($\frac{1}{2}$ wavelength difference). Note that the above computation could have been simplified somewhat by avoiding the explicit use of the tangent and sine functions and making use of the small-angle approximation ($\tan\theta \approx \sin\theta$).

(b) From Eq. 35-22, we get (with $\phi = (0.397)(2\pi) = 2.495$ rad)

$$I = 4I_0 \cos^2(\phi/2) = 0.404 I_0$$

at point *P* and

$$I_{\text{center}} = 4 I_0 \cos^2(0) = 4 I_0$$

at the center. Thus, $I / I_{center} = 0.404 / 4 = 0.101$.

35. For complete destructive interference, we want the waves reflected from the front and back of the coating to differ in phase by an odd multiple of π rad. Each wave is incident on a medium of higher index of refraction from a medium of lower index, so both suffer phase changes of π rad on reflection. If *L* is the thickness of the coating, the wave reflected from the back surface travels a distance 2L farther than the wave reflected from the front. The phase difference is $2L(2\pi/\lambda_c)$, where λ_c is the wavelength in the coating. If *n* is the index of refraction of the coating, $\lambda_c = \lambda/n$, where λ is the wavelength in vacuum, and the phase difference is $2nL(2\pi/\lambda)$. We solve

$$2nL\left(\frac{2\pi}{\lambda}\right) = (2m+1)\pi$$

for *L*. Here *m* is an integer. The result is

$$L=\frac{(2m+1)\lambda}{4n}.$$

To find the least thickness for which destructive interference occurs, we take m = 0. Then,

$$L = \frac{\lambda}{4n} = \frac{600 \times 10^{-9} \,\mathrm{m}}{4(1.25)} = 1.20 \times 10^{-7} \,\mathrm{m}.$$

36. (a) On both sides of the soap is a medium with lower index (air) and we are examining the reflected light, so the condition for strong reflection is Eq. 35-36. With lengths in nm, 2260 for m = 0

$$\lambda = \frac{2n_2L}{m+\frac{1}{2}} = \begin{cases} 3360 & \text{for } m = 0\\ 1120 & \text{for } m = 1\\ 672 & \text{for } m = 2\\ 480 & \text{for } m = 3\\ 373 & \text{for } m = 4\\ 305 & \text{for } m = 5 \end{cases}$$

from which we see the latter *four* values are in the given range.

(b) We now turn to Eq. 35-37 and obtain

$$\lambda = \frac{2n_2L}{m} = \begin{cases} 1680 & \text{for } m = 1\\ 840 & \text{for } m = 2\\ 560 & \text{for } m = 3\\ 420 & \text{for } m = 4\\ 336 & \text{for } m = 5 \end{cases}$$

from which we see the latter *three* values are in the given range.

37. Light reflected from the front surface of the coating suffers a phase change of π rad while light reflected from the back surface does not change phase. If *L* is the thickness of the coating, light reflected from the back surface travels a distance 2*L* farther than light reflected from the front surface. The difference in phase of the two waves is $2L(2\pi/\lambda_c) - \pi$, where λ_c is the wavelength in the coating. If λ is the wavelength in vacuum, then $\lambda_c = \lambda/n$, where *n* is the index of refraction of the coating. Thus, the phase difference is $2nL(2\pi/\lambda) - \pi$. For fully constructive interference, this should be a multiple of 2π . We solve

61. In this setup, we have $n_2 > n_1$ and $n_2 > n_3$, and the condition for minimum transmission (maximum reflection) or destructive interference is

$$2L = \left(m + \frac{1}{2}\right) \frac{\lambda}{n_2} \quad \Rightarrow \quad \lambda = \frac{4Ln_2}{2m+1} \quad , \quad m = 0, 1, 2, \dots$$

Therefore,

$$\lambda = \begin{cases} 4Ln_2 = 4(325 \text{ nm})(1.75) = 2275 \text{ nm} & (m=0) \\ 4Ln_2 / 3 = 4(415 \text{ nm})(1.59) / 3 = 758 \text{ nm} & (m=1) \\ 4Ln_2 / 5 = 4(415 \text{ nm})(1.59) / 5 = 455 \text{ nm} & (m=2) \end{cases}$$

For the wavelength to be in the visible range, we choose m = 2 with $\lambda = 455$ nm.

62. In this setup, we have $n_2 < n_1$ and $n_2 > n_3$, and the condition for maximum transmission (minimum reflection) or constructive interference is

$$2L = \left(m + \frac{1}{2}\right) \frac{\lambda}{n_2} \implies L = \left(m + \frac{1}{2}\right) \frac{\lambda}{2n_2}, \quad m = 0, 1, 2, \dots$$

The second least thickness is (m = 1)

$$L = \left(1 + \frac{1}{2}\right) \frac{342 \text{ nm}}{2(1.59)} = 161 \text{ nm}.$$

63. In this setup, we have $n_2 > n_1$ and $n_2 < n_3$, and the condition for maximum transmission (minimum reflection) or constructive interference is

$$2L = \left(m + \frac{1}{2}\right) \frac{\lambda}{n_2} \quad \Rightarrow \quad L = \left(m + \frac{1}{2}\right) \frac{\lambda}{2n_2} , \quad m = 0, 1, 2, \dots$$

The second least thickness is (m = 1)

$$L = \left(1 + \frac{1}{2}\right) \frac{482 \text{ nm}}{2(1.46)} = 248 \text{ nm}.$$

64. In this setup, we have $n_2 > n_1$ and $n_2 < n_3$, and the condition for maximum transmission (minimum reflection) or constructive interference is

$$2L = \left(m + \frac{1}{2}\right) \frac{\lambda}{n_2} \implies \lambda = \frac{4Ln_2}{2m+1}, \quad m = 0, 1, 2, \dots$$

Thus, we have