4. The equivalent capacitance is

$$
C_{\mathrm{eq}}=C_{3}+\frac{C_{1} C_{2}}{C_{1}+C_{2}}=4.00 \mu \mathrm{~F}+\frac{(10.0 \mu \mathrm{~F})(8.00 \mu \mathrm{~F})}{10.0 \mu \mathrm{~F}+8.00 \mu \mathrm{~F}}=8.44 \mu \mathrm{~F} .
$$

6. (a) The charge q_{3} in the figure is $q_{3}=C_{3} V=(2.00 \mu \mathrm{~F})(100 \mathrm{~V})=2.00 \times 10^{-4} \mathrm{C}$.
(b) $V_{3}=V=100 \mathrm{~V}$.
(c) Using $U_{i}=\frac{1}{2} C_{i} V_{i}^{2}$, we have $U_{3}=\frac{1}{2} C_{3} V_{3}^{2}=1.00 \times 10^{-2} \mathrm{~J}$.
(d) From the figure,

$$
q_{1}=q_{2}=\frac{C_{1} C_{2} V}{C_{1}+C_{2}}=\frac{(10.0 \mu \mathrm{~F})(5.00 \mu \mathrm{~F})(100 \mathrm{~V})}{10.0 \mu \mathrm{~F}+5.00 \mu \mathrm{~F}}=3.33 \times 10^{-4} \mathrm{C} .
$$

(e) $V_{1}=q_{1} / C_{1}=3.33 \times 10^{-4} \mathrm{C} / 10.0 \mu \mathrm{~F}=33.3 \mathrm{~V}$.
(f) $U_{1}=\frac{1}{2} C_{1} V_{1}^{2}=5.55 \times 10^{-3} \mathrm{~J}$.
(g) From part (d), we have $q_{2}=q_{1}=3.33 \times 10^{-4} \mathrm{C}$.
(h) $V_{2}=V-V_{1}=100 \mathrm{~V}-33.3 \mathrm{~V}=66.7 \mathrm{~V}$.
(i) $U_{2}=\frac{1}{2} C_{2} V_{2}^{2}=1.11 \times 10^{-2} \mathrm{~J}$.
14. Each capacitor has 12.0 V across it, so Eq. $25-1$ yields the charge values once we know C_{1} and C_{2}. From Eq. 25-9,

$$
C_{2}=\frac{\varepsilon_{0} A}{d}=2.21 \times 10^{-11} \mathrm{~F},
$$

and from Eq. 25-27,

$$
C_{1}=\frac{\kappa \varepsilon_{0} A}{d}=6.64 \times 10^{-11} \mathrm{~F} .
$$

This leads to

$$
q_{1}=C_{1} V_{1}=6.64 \times 10^{-10} \mathrm{C}, q_{2}=C_{2} V_{2}=2.21 \times 10^{-10} \mathrm{C} .
$$

The addition of these gives the desired result: $q_{\text {tot }}=8.85 \times 10^{-10} \mathrm{C}$. Alternatively, the circuit could be reduced to find the $q_{\text {tot }}$.
16. (a) We use Eq. 25-14:

$$
C=2 \pi \varepsilon_{0} \kappa \frac{L}{\ln (b / a)}=\frac{(4.7)(0.10 \mathrm{~m})}{2\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right) \ln (3.8 \mathrm{~cm} / 3.6 \mathrm{~cm})}=0.48 \mathrm{nF} .
$$

(b) The breakdown potential is $(14 \mathrm{kV} / \mathrm{mm})(3.8 \mathrm{~cm}-3.6 \mathrm{~cm})=28 \mathrm{kV}$.
20. (a) We calculate the charged surface area of the cylindrical volume as follows:

$$
A=2 \pi r h+\pi r^{2}=2 \pi(0.20 \mathrm{~m})(0.10 \mathrm{~m})+\pi(0.20 \mathrm{~m})^{2}=0.25 \mathrm{~m}^{2}
$$

where we note from the figure that although the bottom is charged, the top is not. Therefore, the charge is $q=\sigma A=-0.50 \mu \mathrm{C}$ on the exterior surface, and consequently (according to the assumptions in the problem) that same charge q is induced in the interior of the fluid.
(b) By Eq. 25-21, the energy stored is

$$
U=\frac{q^{2}}{2 C}=\frac{\left(5.0 \times 10^{-7} \mathrm{C}\right)^{2}}{2\left(50 \times 10^{-12} \mathrm{~F}\right)}=2.5 \times 10^{-3} \mathrm{~J} .
$$

(c) Our result is within a factor of 4 of that needed to cause a spark. Our conclusion is that it will probably not cause a spark; however, there is not enough of a safety factor to be sure.
39. THINK After the switches are closed, the potential differences across the capacitors are the same and they are connected in parallel.

EXPRESS The potential difference from a to b is given by $V_{a b}=Q / C_{\mathrm{eq}}$, where Q is the net charge on the combination and $C_{\text {eq }}$ is the equivalent capacitance.

ANALYZE (a) The equivalent capacitance is $C_{\mathrm{eq}}=C_{1}+C_{2}=4.0 \times 10^{-6} \mathrm{~F}$. The total charge on the combination is the net charge on either pair of connected plates. The initial charge on capacitor 1 is

$$
q_{1}=C_{1} V=\left(1.0 \times 10^{-6} \mathrm{~F}\right)(200 \mathrm{~V})=2.0 \times 10^{-4} \mathrm{C}
$$

and the initial charge on capacitor 2 is $q_{2}=C_{2} V=\left(3.0 \times 10^{-6} \mathrm{~F}\right)(200 \mathrm{~V})=6.0 \times 10^{-4} \mathrm{C}$. With opposite polarities, the net charge on the combination is

$$
Q=6.0 \times 10^{-4} \mathrm{C}-2.0 \times 10^{-4} \mathrm{C}=4.0 \times 10^{-4} \mathrm{C} .
$$

The potential difference is

$$
V_{a b}=\frac{Q}{C_{\text {eq }}}=\frac{4.0 \times 10^{-4} \mathrm{C}}{4.0 \times 10^{-6} \mathrm{~F}}=100 \mathrm{~V} .
$$

(b) The charge on capacitor 1 is now $q_{1}^{\prime}=C_{1} V_{a b}=\left(1.0 \times 10^{-6} \mathrm{~F}\right)(100 \mathrm{~V})=1.0 \times 10^{-4} \mathrm{C}$.
(c) The charge on capacitor 2 is now $q_{2}^{\prime}=C_{2} V_{a b}=\left(3.0 \times 10^{-6} \mathrm{~F}\right)(100 \mathrm{~V})=3.0 \times 10^{-4} \mathrm{C}$.

LEARN The potential difference $V_{a b}=100 \mathrm{~V}$ is half of the original $V=200 \mathrm{~V}$, so the final charges on the capacitors are also halved.

