9. (a) All the charge is the same distance R from C, so the electric potential at C is

$$
V=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{Q_{1}}{R}-\frac{6 Q_{1}}{R}\right)=-\frac{5 Q_{1}}{4 \pi \varepsilon_{0} R}=-\frac{5\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(7.07 \times 10^{-12} \mathrm{C}\right)}{8.20 \times 10^{-2} \mathrm{~m}}=-3.88 \mathrm{~V},
$$

where the zero was taken to be at infinity.
(b) All the charge is the same distance from P. That distance is $\sqrt{R^{2}+D^{2}}$, so the electric potential at P is

$$
\begin{aligned}
V & =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{Q_{1}}{\sqrt{R^{2}+D^{2}}}-\frac{6 Q_{1}}{\sqrt{R^{2}+D^{2}}}\right]=-\frac{5 Q_{1}}{4 \pi \varepsilon_{0} \sqrt{R^{2}+D^{2}}} \\
& =-\frac{5\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(7.07 \times 10^{-12} \mathrm{C}\right)}{\sqrt{\left(8.20 \times 10^{-2} \mathrm{~m}\right)^{2}+\left(2.05 \times 10^{-2} \mathrm{~m}\right)^{2}}} \\
& =-3.76 \mathrm{~V} .
\end{aligned}
$$

13. We use the conservation of energy principle. The initial potential energy is $U_{i}=$ $q^{2} / 4 \pi \varepsilon_{0} r_{1}$, the initial kinetic energy is $K_{i}=0$, the final potential energy is $U_{f}=q^{2} / 4 \pi \varepsilon_{0} r_{2}$, and the final kinetic energy is $K_{f}=\frac{1}{2} m v^{2}$, where v is the final speed of the particle. Conservation of energy yields

$$
\frac{q^{2}}{4 \pi \varepsilon_{0} r_{1}}=\frac{q^{2}}{4 \pi \varepsilon_{0} r_{2}}+\frac{1}{2} m v^{2}
$$

The solution for v is

$$
\begin{aligned}
v & =\sqrt{\frac{2 q^{2}}{4 \pi \varepsilon_{0} m}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)}=\sqrt{\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)(2)\left(3.1 \times 10^{-6} \mathrm{C}\right)^{2}}{20 \times 10^{-6} \mathrm{~kg}}\left(\frac{1}{0.90 \times 10^{-3} \mathrm{~m}}-\frac{1}{1.5 \times 10^{-3} \mathrm{~m}}\right)} \\
& =1960 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

and the corresponding momentum is

$$
p=m v=\left(20 \times 10^{-6} \mathrm{~kg}\right)(1960 \mathrm{~m} / \mathrm{s})=3.9 \times 10^{-2} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

17. THINK The component of the electric field \vec{E} in a given direction is the negative of the rate at which potential changes with distance in that direction.

EXPRESS With $V=2.00 x y z^{2}$, we apply Eq. 24-41 to calculate the x, y, and z components of the electric field:

$$
\begin{aligned}
& E_{x}=-\frac{\partial V}{\partial x}=-2.00 y z^{2} \\
& E_{y}=-\frac{\partial V}{\partial y}=-2.00 x z^{2} \\
& E_{z}=-\frac{\partial V}{\partial z}=-4.00 x y z
\end{aligned}
$$

which, at $(x, y, z)=(-1.00 \mathrm{~m},-2.00 \mathrm{~m}, 4.00 \mathrm{~m})$, gives

$$
\left(E_{x}, E_{y}, E_{z}\right)=(+64.0 \mathrm{~V} / \mathrm{m},+32.0 \mathrm{~V} / \mathrm{m},-32.0 \mathrm{~V} / \mathrm{m}) .
$$

ANALYZE The magnitude of the field is therefore

$$
\begin{aligned}
|\vec{E}| & =\sqrt{E_{x}^{2}+E_{y}^{2}+E_{z}^{2}}=\sqrt{(64.0 \mathrm{~V} / \mathrm{m})^{2}+(+32.0 \mathrm{~V} / \mathrm{m})^{2}+(-32.0 \mathrm{~V} / \mathrm{m})^{2}} \\
& =78.4 \mathrm{~V} / \mathrm{m}=78.4 \mathrm{~N} / \mathrm{C} .
\end{aligned}
$$

LEARN If the electric potential increases along some direction, say x, with $\partial V / \partial x>0$, then there is a corresponding non-vanishing component of \vec{E} in the opposite direction $\left(-E_{x} \neq 0\right)$.
41. THINK Ampere is the SI unit for current. An ampere is one coulomb per second.

EXPRESS To calculate the total charge through the circuit, we note that $1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}$ and $1 \mathrm{~h}=3600 \mathrm{~s}$.

ANALYZE (a) Thus,

$$
q=70 \mathrm{~A} \cdot \mathrm{~h}=\left(70 \frac{\mathrm{C} \cdot \mathrm{~h}}{\mathrm{~s}}\right)\left(3600 \frac{\mathrm{~s}}{\mathrm{~h}}\right)=2.52 \times 10^{5} \mathrm{C} \approx 2.5 \times 10^{5} \mathrm{C} .
$$

(b) The change in potential energy is $\Delta U=q \Delta V=\left(2.52 \times 10^{5} \mathrm{C}\right)(25 \mathrm{~V})=6.3 \times 10^{6} \mathrm{~J}$.

LEARN Potential difference is the change of potential energy per unit charge. Unlike electric field, potential difference is a scalar quantity.
47. Let the distance in question be r. The initial kinetic energy of the electron is $K_{i}=\frac{1}{2} m_{e} v_{i}^{2}$, where $v_{i}=3.2 \times 10^{5} \mathrm{~m} / \mathrm{s}$. As the speed doubles, K becomes $4 K_{i}$. Thus

$$
\Delta U=\frac{-e^{2}}{4 \pi \varepsilon_{0} r}=-\Delta K=-\left(4 K_{i}-K_{i}\right)=-3 K_{i}=-\frac{3}{2} m_{e} v_{i}^{2},
$$

or

$$
r=\frac{2 e^{2}}{3\left(4 \pi \varepsilon_{0}\right) m_{e} v_{i}^{2}}=\frac{2\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2}\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)}{3\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.6 \times 10^{5} \mathrm{~m} / \mathrm{s}\right)^{2}}=6.6 \times 10^{-9} \mathrm{~m} .
$$

