2. Referring to Eq. 22-6, we use the binomial expansion (see Appendix E) but keeping higher order terms than are shown in Eq. 22-7:

$$
\begin{aligned}
E & =\frac{q}{4 \pi \varepsilon_{0} z^{2}}\left(\left(1+\frac{d}{z}+\frac{3}{4} \frac{d^{2}}{z^{2}}+\frac{1}{2} \frac{d^{3}}{z^{3}}+\ldots\right)-\left(1-\frac{d}{z}+\frac{3}{4} \frac{d^{2}}{z^{2}}-\frac{1}{2} \frac{d^{3}}{z^{3}}+\ldots\right)\right) \\
& =\frac{q d}{2 \pi \varepsilon_{0} z^{3}}+\frac{q d^{3}}{4 \pi \varepsilon_{0} z^{5}}+\ldots
\end{aligned}
$$

Therefore, in the terminology of the problem, $E_{\text {next }}=q d^{3} / 4 \pi \varepsilon_{0} z^{5}$.
3. Our system is a uniformly charged disk of radius R. We compare the field strengths at different points on its axis of symmetry. At a point on the axis of a uniformly charged disk a distance z above the center of the disk, the magnitude of the electric field is given by Eq. 22-26:

$$
E=\frac{\sigma}{2 \varepsilon_{0}}\left[1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right]
$$

where R is the radius of the disk and σ is the surface charge density on the disk. The magnitude of the field at the center of the disk $(z=0)$ is $E_{c}=\sigma / 2 \varepsilon_{0}$. We want to solve for the value of z such that $E / E_{c}=1 / 4$. This means

$$
1-\frac{z}{\sqrt{z^{2}+R^{2}}}=\frac{1}{4} \Rightarrow \frac{z}{\sqrt{z^{2}+R^{2}}}=\frac{3}{4} .
$$

Squaring both sides, then multiplying them by $z^{2}+R^{2}$, we obtain $16 z^{2}=9\left(z^{2}+R^{2}\right)$. Thus, $z^{2}=9 R^{2} / 7$, or $z=3 R / \sqrt{7}$. With $R=0.600 \mathrm{~m}$, we have $z=0.680 \mathrm{~m}$.
11. From symmetry, we see that the net field at P is twice the field caused by the upper semicircular charge $+q=\lambda(\pi R)$ (and that it points downward). Adapting the steps leading to Eq. 22-21, we find

$$
\vec{E}_{\text {net }}=\left.2(-\hat{\mathrm{j}}) \frac{\lambda}{4 \pi \varepsilon_{0} R} \sin \theta\right|_{-90^{\circ}} ^{90^{\circ}}=-\left(\frac{q}{\varepsilon_{0} \pi^{2} R^{2}}\right) \hat{\mathrm{j}} .
$$

(a) With $R=4.25 \times 10^{-2} \mathrm{~m}$ and $q=1.50 \times 10^{-11} \mathrm{C}$, we obtain

$$
\left|\vec{E}_{\text {net }}\right|=\frac{q}{\varepsilon_{0} \pi^{2} R^{2}}=\frac{1.50 \times 10^{-11} \mathrm{C}}{\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right) \pi^{2}\left(4.25 \times 10^{-2} \mathrm{~m}\right)^{2}}=95.1 \mathrm{~N} / \mathrm{C} .
$$

(b) The net electric field $\vec{E}_{\text {net }}$ points in the $-\hat{\mathrm{j}}$ direction, or -90° counterclockwise from the $+x$ axis.
32. We place the origin of our coordinate system at point P and orient our y axis in the direction of the $q_{4}=-12 q$ charge (passing through the $q_{3}=+3 q$ charge). The x axis is perpendicular to the y axis, and thus passes through the identical $q_{1}=q_{2}=+5 q$ charges. The individual magnitudes $\left|\vec{E}_{1}\right|,\left|\vec{E}_{2}\right|,\left|\vec{E}_{3}\right|$, and $\left|\vec{E}_{4}\right|$ are figured from Eq. 22-3, where the absolute value signs for q_{1}, q_{2}, and q_{3} are unnecessary since those charges are positive (assuming $q>0$). We note that the contribution from q_{1} cancels that of q_{2} (that is, $\left|\vec{E}_{1}\right|=\left|\vec{E}_{2}\right|$), and the net field (if there is any) should be along the y axis, with magnitude equal to

$$
\vec{E}_{\mathrm{Det}}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{\left|q_{4}\right|}{(2 d)^{2}}-\frac{q_{3}}{d^{2}}\right) \hat{\mathrm{j}}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{12 q}{4 d^{2}}-\frac{3 q}{d^{2}}\right) \hat{\mathrm{j}}
$$

which is seen to be zero. A rough sketch of the field lines is shown below:

50. Due to the fact that the electron is negatively charged, then (as a consequence of Eq. 22-28 and Newton's second law) the field \vec{E} pointing in the $+y$ direction (which we will call "upward") leads to a downward acceleration. This is exactly like a projectile motion problem as treated in Chapter 4 (but with g replaced with $a=e E / m=8.78 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$). Thus, Eq. 4-21 gives

$$
t=\frac{x}{v_{0} \cos \theta_{0}}=\frac{3.00 \mathrm{~m}}{\left(4.00 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \cos 40.0^{\circ}}=9.80 \times 10^{-7} \mathrm{~s} \mathrm{.}
$$

This leads (using Eq. 4-23) to

$$
\begin{aligned}
v_{y} & =v_{0} \sin \theta_{0}-a t=\left(4.00 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \sin 40.0^{\circ}-\left(8.78 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}\right)\left(9.80 \times 10^{-7} \mathrm{~s}\right) \\
& =1.71 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Since the x component of velocity does not change, then the final velocity is

$$
\vec{v}=\left(3.06 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \hat{i}+\left(1.71 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{j}} .
$$

59. (a) The smallest arc is of length $L_{1}=\pi r_{1} / 2=\pi R / 2$; the middle-sized arc has length $L_{2}=\pi r_{2} / 2=\pi(2 R) / 2=\pi R$; and, the largest arc has $L_{3}=\pi(3 R) / 2$. The charge per unit length for each arc is $\lambda=q / L$ where each charge q is specified in the figure. Thus, we find the net electric field to be

$$
\begin{aligned}
E_{\text {net }} & =\frac{\lambda_{1}\left(2 \sin 45^{\circ}\right)}{4 \pi \varepsilon_{0} r_{1}}+\frac{\lambda_{2}\left(2 \sin 45^{\circ}\right)}{4 \pi \varepsilon_{0} r_{2}}+\frac{\lambda_{3}\left(2 \sin 45^{\circ}\right)}{4 \pi \varepsilon_{0} r_{3}}=\frac{4 Q}{\sqrt{2} \pi\left(4 \pi \varepsilon_{0}\right) R^{2}} \\
& =\frac{4\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(4.00 \times 10^{-6} \mathrm{C}\right)}{\sqrt{2} \pi(0.050 \mathrm{~m})^{2}}=1.30 \times 10^{7} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

(b) The direction is -45°, measured counterclockwise from the $+x$ axis.

