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2. Referring to Eq. 22-6, we use the binomial expansion (see Appendix E) but keeping
higher order terms than are shown in Eq. 22-7:
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3. Our system is a uniformly charged disk of radius T. We compare the field strengths at
different points on its axis of symmetry. At a point on the axis of a uniformly charged
disk a distance | above the center of the disk, the magnitude of the electric field is given
by Eq. 22-26:
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where T is the radius of the disk and is the surface charge density on the disk. The
magnitude of the field at the center of the disk (| = 0) is Ge = /2g0. We want to solve for
the value of | such that G/Ge = 1/4. This means
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Squaring both sides, then multiplying them by |
2 + T

2, we obtain 16|
2 = 9(|2 + T

2). Thus,

|
2 = 9T

2/7, or 3 7| T? . With T = 0.600 m, we have | = 0.680 m.
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11. From symmetry, we see that the net field at R is twice the field caused by the upper
semicircular charge )s T, ? ) (and that it points downward). Adapting the steps leading

to Eq. 22-21, we find
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(a) With T = 4.25�10.!2 m and s = 1.50�10.11 C, we obtain
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(b) The net electric field netG
h

points in the j. direction, or 90. � counterclockwise from

the +z axis.
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32. We place the origin of our coordinate system at point R and orient our { axis in the
direction of the s4 = 12s charge (passing through the s3 = +3s charge). The z axis is
perpendicular to the { axis, and thus passes through the identical s1 = s2 = +5s charges.

The individual magnitudes | |, | |, | |,
h h h
G G G1 2 3 and | |

h
G4 are figured from Eq. 22-3, where the

absolute value signs for s1, s2, and s3 are unnecessary since those charges are positive
(assuming s > 0). We note that the contribution from s1 cancels that of s2 (that is,

| | | |
h h
G G1 2? ), and the net field (if there is any) should be along the { axis, with magnitude

equal to

which is seen to be zero. A rough sketch of the field lines is shown below:
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50. Due to the fact that the electron is negatively charged, then (as a consequence of Eq.

22-28 and Newton s second law) the field G
�

pointing in the +{ direction (which we will
call upward ) leads to a downward acceleration. This is exactly like a projectile motion
problem as treated in Chapter 4 (but with i replaced with c!?!gG0o!? 8.78 � 1011 m/s2).
Thus, Eq. 4-21 gives
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This leads (using Eq. 4-23) to
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Since the z component of velocity does not change, then the final velocity is

!x!! ! = (3.06 � 106 m/s) i
^

, (1.71 � 106 m/s) j
^

.
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59. (a) The smallest arc is of length N1 = t1 02 = T02; the middle-sized arc has length

2 2 / 2 (2 ) / 2N t T T? ? ? ; and, the largest arc has N3 = )4T)02. The charge per unit

length for each arc is = s0N where each charge s is specified in the figure. Thus, we
find the net electric field to be
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(b) The direction is 45º, measured counterclockwise from the +z axis.


