Extended Syllabus

(Summer 2024)

Course Title	Data Structures	Course Number	TBD
Credit	TBD	Enrollment Eligibility	TBD
Class Time	N/A	Classroom	N/A

	Name: Youngjae Kim	Homepage: http://discos.sogang.ac.kr	
	E-mail: youkim@sogang.ac.kr	Telephone: (+82) 2-705-8933	
	Office: AS 911		
	Office Hours: TBD		

I. Course Overview

Image: Construction of the structure of this course is to learn the design, analysis, implementation, and theory of data structures. Throughout the course we will look at elementary data structures such as lists, stacks, queues, and trees, and how they are implemented using a programming language. Also, we will use these data structures to solve a variety of computational problems and analyze their efficiency. 2. Prerequisites C C Programming or equivalent. The students are expected to have some experience in basic C programming. 3. Course Format (%) Lecture Discussion Experiment /Practicum Field study Presentations Other 80 % % 20 % % % %	structures. Th queues, and these data st	ughout the course we will look at ele ees, and how they are implemented us	mentary data structures su sing a programming langu	ich as lists, stacl age. Also, we w	ks, ill use	
queues, and trees, and how they are implemented using a programming language. Also, we will use these data structures to solve a variety of computational problems and analyze their efficiency. 2. Prerequisites C Programming or equivalent. The students are expected to have some experience in basic C programming. 3. Course Format (%) Lecture Discussion Experiment Field study Presentations 80 % % 20 % %	queues, and these data st	ees, and how they are implemented us	sing a programming langu	age. Also, we w	ill use	
these data structures to solve a variety of computational problems and analyze their efficiency. 2. Prerequisites C Programming or equivalent. The students are expected to have some experience in basic C programming. 3. Course Format (%) Lecture Discussion Kerticum Field study Presentations Other 80 % % 20 % %	these data st	<u> </u>				
2. Prerequisites C Programming or equivalent. The students are expected to have some experience in basic C programming. 3. Course Format (%) Lecture Discussion B0 % % 20 % % Mathematical Structure Structure Structure B0 % % 20 % % Structure %			, ,	,		
C Programming or equivalent. The students are expected to have some experience in basic C programming. 3. Course Format (%) Lecture Discussion Experiment /Practicum Field study Presentations Other 80 % % 20 % % % %						
LectureDiscussionExperiment /PracticumField studyPresentationsOther80 %%20 %%%%	C Programming or equivalent. The students are expected to have some experience in basic C					
LectureDiscussion/PracticumField studyPresentationsOther80 %%20 %%%%	3. Course Format (%)					
/Practicum // 80 % % 20 % % %	Experiment					
	Lecture	/Practicum	Presentation	ons Other		
4 Evolution $(0/)$	80 % % 20 % % %		%			
	· L					
mid-term ExamFinal ExamQuizzesPresentationsProjectsAssignmentsParticipationOther	4. Evaluation	6)				
30 % 30 % % % 30 % 10 % %	mid-term	,	Projects Assignments	Participation	Other	

II. Course Objectives

Knowledge:

- (1) Understanding why data structures are important in solving computational problems
- (2) Understanding frequently used elementary data structures such as lists, stacks, queues and trees
- (3) Understanding how data structures are used in algorithms to solve problems

Skill:

- (1) Implementing data structures and algorithms using a programming language (such as C)
- (2) Designing efficient algorithms

Attitude:

- (1) Designing algorithms and mathematically analyzing their efficiency
- (2) Problem solving by designing algorithms and selecting the best data structures

- Lectures

- Programming assignments
- Supplementary labs may be provided to help students with the assignments

IV. Course Requirements and Grading Criteria

- Programming assignments will be given based on the theory learned in class.
- The students should use C language to accomplish the given requirements.
- Additional requirements may be given such as documenting the code and writing report documents.

V. Course Policies

- Students may not copy others' work. Copying will result in a score of 0.

- For programming assignments, we run a software that evaluates similarity between the codes. If the similarity score is high, the TAs will look at the code and decide whether they are actually copied work or not.

- Discussing ideas with others is encouraged.

VI. Materials and References

Textbook: Ellis Horowitz et al., Fundamentals of Data Structures in C, 2nd edition, Silicon Press, 2007.
Supplementary book: Thomas Cormen et al., Introduction to Algorithms, 3rd edition, MIT Press, 2009.

VII. Course Schedule

(* Subject to change)

Week	Learning	intro to data structures	
	Objectives		
		Introduction to the concept of algorithms, understanding course	
	Topics	objectives, basics of algorithm specification, and overview of	
	•	different data structures.	
	Class Work		
1	(Methods)	lecture	
(Day1)	Materials		
	inaterials		
	(Required	chapter 1	
	Readings)		
	Assignments	Assignments will be announced in class.	
Week 1 (Day2)	Learning		
	Objectives	intro to data structures	
	Topics	Deep dive into data abstraction, understanding its importance in data structures, introduction to complexity analysis of algorithms.	
	Class Work		
	(Methods)	lecture	
	Materials		
	(Required	chapter 1	
	Readings)		
I			

	Assignments	Assignments will be announced in class.
Week 1 (Day3)	Learning Objectives	arrays
	Topics	Fundamentals of arrays, memory organization of arrays, techniques for implementing and manipulating arrays in programming language.
	Class Work (Methods)	lecture
	Materials (Required Readings)	chapter 2
	Assignments	Assignments will be announced in class.
	Learning Objectives	arrays
	Topics	Developing algorithms using arrays, array manipulation techniques, case studies of array-based problem-solving.
Week 1	Class Work (Methods)	lecture
(Day4)	Materials (Required Readings)	chapter 2
	Assignments	Assignments will be announced in class.
	Learning Objectives	stacks & queues
	Topics	Introduction to stacks and queues, understanding their underlying principles, implementation strategies for both data structures.
Week 2	Class Work (Methods)	lecture
2 (Day5)	Materials (Required Readings)	chapter 3
-	Assignments	Assignments will be announced in class.
	Learning Objectives	stacks & queues
	Topics	Exploring algorithms that use stacks, understanding stack operations, practical applications of stacks in computing.
Week 2 (Day6)	Class Work (Methods)	lecture
	Materials (Required Readings)	chapter 3
	Assignments	Assignments will be announced in class.
	Learning Objectives	stacks & queues
Week	Topics	Continuing with algorithms using stacks, including complex problem solving with stacks.
2 (Day7)	Class Work (Methods)	lecture
	Materials	chapter 3

	(Required	
	Readings)	
-		
	Assignments	Assignments will be announced in class.
Week 2 (Day8)	Learning	
	Objectives	
	Topics	Midterm exam
	Class Work	
	(Methods) Materials	
	(Required	
	Readings)	
	Assignments	
	Learning	
_	Objectives	linked lists
	Topics	Introduction to linked lists, understanding singly linked lists, memory management for linked lists.
Week	Class Work	lecture
3	(Methods) Materials	
(Day9)	(Required	chapter 4
	(Readings)	
	Assignments	Assignments will be announced in class.
	Learning Objectives	linked lists
	Topics	Problem-solving using linked lists, algorithmic approaches, and complex operations in linked lists.
Week	Class Work	lactura
3	(Methods)	lecture
(Day10)	Materials (Required Readings)	chapter 4
	Assignments	Assignments will be announced in class.
	Learning Objectives	linked lists
-	Topics	Advanced problems and solutions using linked lists, and linked list variations.
Week 3 (Day11)	Class Work (Methods)	lecture
	Materials	
	(Required	chapter 4
	Readings)	
	Assignments	Assignments will be announced in class.
Week	Learning Objectives	trees
3	Topics	Basics of tree data structures, introduction to binary trees, tree traversal methods, and applications.
(Day12)	Class Work	lecture

	(Methods)	
	Materials	
	(Required	chapter 5
	Readings)	
	Assignments	Assignments will be announced in class.
	Learning Objectives	trees
Week	Topics	Exploring different types of trees - heaps, binary search trees, decision trees, and their practical uses.
4 (Day13)	Class Work (Methods)	lecture
(Day 13)	Materials (Required Readings)	chapter 5
	Assignments	Assignments will be announced in class.
	Learning Objectives	graphs
	Topics	Introduction to graph theory, various ways of graph representation, basic graph searching algorithms.
Week 4	Class Work (Methods)	lecture
4 (Day14)	Materials (Required Readings)	chapter 6
	Assignments	Assignments will be announced in class.
	Learning Objectives	graphs
	Topics	Detailed study of minimum spanning trees, shortest path algorithms, and their practical uses.
Week 4	Class Work (Methods)	lecture
(Day15)	Materials (Required Readings)	chapter 6
	Assignments	Assignments will be announced in class.
	Learning Objectives	
	Topics	Final exam
Week 4	Class Work (Methods)	
- (Day16)	Materials	
(20)10)	(Required	
	Readings)	
	Assignments	

W. Special Accommodations

IX. Aid for the Challenged Students

If you need special aid in taking this course, send an email to the instructor.

