Chapter 33

\# 1. After passing through the first polarizer the initial intensity I_{0} reduces by a factor of $1 / 2$. After passing through the second one it is further reduced by a factor of $\cos ^{2}\left(\pi-\theta_{1}-\theta_{2}\right)=\cos ^{2}$ $\left(\theta_{1}+\theta_{2}\right)$. Finally, after passing through the third one it is again reduced by a factor of $\cos ^{2}(\pi-$ $\left.\theta_{2}-\theta_{3}\right)=\cos ^{2}\left(\theta_{2}+\theta_{3}\right)$. Therefore,

$$
\begin{aligned}
\frac{I_{f}}{I_{0}} & =\frac{1}{2} \cos ^{2}\left(\theta_{1}+\theta_{2}\right) \cos ^{2}\left(\theta_{2}+\theta_{3}\right)=\frac{1}{2} \cos ^{2}\left(30^{\circ}+30^{\circ}\right) \cos ^{2}\left(30^{\circ}+30^{\circ}\right) \\
& =3.1 \times 10^{-2}
\end{aligned}
$$

Thus, 3.1% of the light's initial intensity is transmitted.
\# 6. When examining Fig. 33-61, it is important to note that the angle (measured from the central axis) for the light ray in air, θ, is not the angle for the ray in the glass core, which we denote θ^{\prime}. The law of refraction leads to

$$
\sin \theta^{\prime}=\frac{1}{n_{1}} \sin \theta
$$

assuming $n_{\text {air }}=1$.The angle of incidence for the light ray striking the coating is the complement of θ^{\prime}, which we denote as $\theta_{\text {comp }}^{\prime}$, and recall that

$$
\sin \theta_{\text {comp }}^{\prime}=\cos \theta^{\prime}=\sqrt{1-\sin ^{2} \theta^{\prime}} .
$$

In the critical case, $\theta_{\text {comp }}^{\prime}$ must equal θ_{c} specified by Eq. 33-47. Therefore,

$$
\frac{n_{2}}{n_{1}}=\sin \theta_{\text {comp }}^{\prime}=\sqrt{1-\sin ^{2} \theta^{\prime}}=\sqrt{1-\frac{\bar{n}}{\bar{n}} \cdot \sin \theta^{2} \mathbf{K}}
$$

which leads to the result: $\sin \theta=\sqrt{n_{1}^{2}-n_{2}^{2}}$. With $n_{1}=1.62$ and $n_{2}=1.53$, we obtain

$$
\theta=\sin ^{-1}\left(1.58^{2}-1.53^{2}\right)^{0.5}=32.2^{\circ}
$$

\# 9. THINK We apply law of refraction to both interfaces to calculate the sideway displacement.

EXPRESS Let θ be the angle of incidence and θ_{2} be the angle of refraction at the left face of the plate. Let n be the index of refraction of the glass. Then, the law of refraction yields

$$
\sin \theta=n \sin \theta_{2}
$$

The angle of incidence at the right face is also θ_{2}. If θ_{3} is the angle of emergence there, then $n \sin \theta_{2}=\sin \theta_{3}$.

ANALYZE (a) Combining the two expressions gives $\sin \theta_{3}=\sin \theta$, which implies that $\theta_{3}=\theta$. Thus, the emerging ray is parallel to the incident ray.
(b) We wish to derive an expression for x in terms of θ. If D is the length of the ray in the glass, then $D \cos \theta_{2}=t$ and $D=t / \cos \theta_{2}$. The angle α in the diagram equals $\theta-\theta_{2}$ and

$$
x=D \sin \alpha=D \sin \left(\theta-\theta_{2}\right) .
$$

Thus,

$$
x=\frac{t \sin \left(\theta-\theta_{2}\right)}{\cos \theta_{2}} .
$$

If all the angles $\theta, \theta_{2}, \theta_{3}$, and $\theta-\theta_{2}$ are small and measured in radians, then $\sin \theta \approx \theta, \sin \theta_{2} \approx \theta_{2}$, $\sin \left(\theta-\theta_{2}\right) \approx \theta-\theta_{2}$, and $\cos \theta_{2} \approx 1$. Thus $x \approx t\left(\theta-\theta_{2}\right)$. The law of refraction applied to the point of incidence at the left face of the plate is now $\theta \approx n \theta_{2}$, so $\theta_{2} \approx \theta / n$ and

LEARN The thicker the glass, the greater the displacement x. Note in the limit $n=1$ (no glass), $x=0$, as expected.
\# 42. (a) The condition (in Eq. 33-44) required in the critical angle calculation is $\theta_{3}=90^{\circ}$. Thus (with $\theta_{2}=\theta_{c}$, which we don't compute here),

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}=n_{3} \sin \theta_{3}
$$

leads to $\theta_{1}=\theta=\sin ^{-1} n_{3} / n_{1}=49.9^{\circ}$.
(b) Yes. Reducing θ leads to a reduction of θ_{2} so that it becomes less than the critical angle; therefore, there will be some transmission of light into material 3 .
(c) We note that the complement of the angle of refraction (in material 2) is the critical angle. Thus,

$$
n_{1} \sin \theta=n_{2} \cos \theta_{c}=n_{2} \sqrt{1-\left.\overrightarrow{\boldsymbol{m}_{n}}\right|^{2}}
$$

leading to $\theta=47.1^{\circ}$.
(d) No. Reducing θ leads to an increase of the angle with which the light strikes the interface between materials 2 and 3, so it becomes greater than the critical angle. Therefore, there will be no transmission of light into material 3 .
\# 55. (a) The wave is traveling in the $-y$ direction (see $\S 16-5$ for the significance of the relative sign between the spatial and temporal arguments of the wave function).
(b) Figure 33-5 may help in visualizing this. The direction of propagation (along the y axis) is perpendicular to \vec{B} (presumably along the x axis, since the problem gives B_{x} and no other component) and both are perpendicular to \vec{E} (which determines the axis of polarization). Thus, the wave is z polarized.
(c) Since the magnetic field amplitude is $B_{m}=4.00 \mu \mathrm{~T}$, then (by Eq. 33-5) $E_{m}=1199 \mathrm{~V} / \mathrm{m}$ $\approx 1.20 \times 10^{3} \mathrm{~V} / \mathrm{m}$. Dividing by $\sqrt{2}$ yields $E_{\mathrm{rms}}=848 \mathrm{~V} / \mathrm{m}$. Then, Eq. 33-26 gives

$$
I=\frac{I}{c \mu_{0}} E_{\mathrm{rms}}^{2}=1.91 \times 10^{3} \mathrm{~W} / \mathrm{m}^{2}
$$

(d) Since $k c=\omega$ (equivalent to $c=f \lambda$), we have

$$
k=\frac{2.00 \times 10^{15}}{c}=6.67 \times 10^{6} \mathrm{~m}^{-1}
$$

Summarizing the information gathered so far, we have (with SI units understood)

$$
E_{z}=\left(1.2 \times 10^{3} \mathrm{~V} / \mathrm{m}\right) \sin \left[\left(6.67 \times 10^{6} / \mathrm{m}\right) y+\left(2.00 \times 10^{15} / \mathrm{s}\right) t\right] .
$$

(e) $\lambda=2 \pi / k=942 \mathrm{~nm}$.
(f) This is an infrared light.

