Chapter 32

\# 1. (a) A sketch of the field lines (due to the presence of the bar magnet) in the vicinity of the loop is shown below:

(b) The primary conclusion of Section 32-9 is two-fold: $\vec{\mu}$ is opposite to \vec{B}, and the effect of \vec{F} is to move the material toward regions of weaker magnetic fields. The direction of the magnetic moment vector (of our loop) is toward the right in our sketch, or in the $+x$ direction.
(c) The direction of the current is clockwise (from the perspective of the bar magnet).
(d) Since the magnitude of B relates to the "crowdedness" of the field lines, we see that \vec{F} is toward the right in our sketch, or in the $+x$ direction.
\# 11. (a) Here, the enclosed electric flux is found by integrating

$$
\Phi_{E}=\int_{0}^{r} E 2 \pi r d r=t(0.500 \mathrm{~V} / \mathrm{m} \cdot \mathrm{~s})(2 \pi) \int_{0}^{r}\left(1-\frac{r}{R}\right) r d r=t \pi\left(\frac{1}{2} r^{2}-\frac{r^{3}}{3 R}\right)
$$

with SI units understood. Then (after taking the derivative with respect to time) Eq. 32-3 leads to

$$
B(2 \pi r)=\varepsilon_{0} \mu_{0} \pi\left(\frac{1}{2} r^{2}-\frac{r^{3}}{3 R}\right)
$$

For $r=0.0150 \mathrm{~m}$ and $R=0.0300 \mathrm{~m}$, this gives $B=2.78 \times 10^{-20} \mathrm{~T}$.
(b) The integral shown above will no longer (since now $r>R$) have r as the upper limit; the upper limit is now R. Thus,

$$
\Phi_{E}=t \pi\left(\frac{1}{2} R^{2}-\frac{R^{3}}{3 R}\right)=\frac{1}{6} t \pi R^{2} .
$$

Consequently, Eq. 32-3 becomes

$$
B(2 \pi r)=\frac{1}{6} \varepsilon_{0} \mu_{0} \pi R^{2}
$$

which for $r=0.0400 \mathrm{~m}$, yields

$$
B=\frac{\varepsilon_{0} \mu_{0} R^{2}}{12 r}=\frac{\left(8.85 \times 10^{-12}\right)\left(4 \pi \times 10^{-7}\right)(0.030)^{2}}{12(0.0400)}=2.09 \times 10^{-20} \mathrm{~T} .
$$

\# 15. (a) Eq. 32-11 applies (though the last term is zero) but we must be careful with $i_{d, \text { enc }}$. It is the enclosed portion of the displacement current. Thus Eq. 32-17 (which derives from Eq. 3211) becomes, with i_{d} replaced with $i_{d, \text { enc }}$,

$$
B=\frac{\mu_{0} i_{d \mathrm{enc}}}{2 \pi r}=\frac{\mu_{0}(5.00 \mathrm{~A})(r / R)}{2 \pi r}
$$

which yields (after canceling r, and setting $R=0.0300 \mathrm{~m}$) $B=33.3 \mu \mathrm{~T}$.
(b) Here $i_{d}=3.00 \mathrm{~A}$, and we get $B=\frac{\mu_{0} i_{d}}{2 \pi r}=16.7 \mu \mathrm{~T}$.
\# 25. We use Eq. 32-27 to obtain

$$
\Delta U=-\Delta\left(\mu_{s, z} B\right)=-B \Delta \mu_{s, z}
$$

where $\mu_{s, z}= \pm e h / 4 \pi m_{e}= \pm \mu_{B}$ (see Eqs. 32-24 and 32-25). Thus,

$$
\Delta U=-B\left[\mu_{B}-\left(-\mu_{B}\right)\right]=2 \mu_{B} B=2\left(9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T}\right)(0.48 \mathrm{~T})=8.9 \times 10^{-24} \mathrm{~J}
$$

\# 26. (a) From Eq. 32-10,

$$
\begin{aligned}
i_{d} & =\varepsilon_{0} \frac{d \Phi_{E}}{d t}=\varepsilon_{0} A \frac{d E}{d t}=\varepsilon_{0} A \frac{d}{d t}\left[\left(9.0 \times 10^{5}\right)-\left(4.0 \times 10^{4} t\right)\right]=-\varepsilon_{0} A\left(4.0 \times 10^{4} \mathrm{~V} / \mathrm{m} \cdot \mathrm{~s}\right) \\
& =-\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(2.0 \times 10^{-2} \mathrm{~m}^{2}\right)\left(4.0 \times 10^{4} \mathrm{~V} / \mathrm{m} \cdot \mathrm{~s}\right) \\
& =-7.1 \times 10^{-9} \mathrm{~A} .
\end{aligned}
$$

Thus, the magnitude of the displacement current is $\left|i_{d}\right|=7.1 \times 10^{-9} \mathrm{~A}$.
(b) The negative sign in i_{d} implies that the direction is downward.
(c) If one draws a counterclockwise circular loop s around the plates, then according to Eq. 3218,

$$
\bar{Z} \vec{B} \cdot d \vec{s}=\mu_{0} i_{d}<0
$$

which means that $\vec{B} \cdot d \vec{s}<0$. Thus \vec{B} must be clockwise.
\# 34. From Sample Problem 32.01 - "Magnetic field induced by changing electric field," we know that $B \propto r$ for $r \leq R$ and $B \propto r^{-1}$ for $r \geq R$. So the maximum value of B occurs at $r=R$, and there are two possible values of r at which the magnetic field is 60% of $B_{\max }$. We denote these two values as r_{1} and r_{2}, where $r_{1}<R$ and $r_{2}>R$.
(a) Inside the capacitor, $0.60 B_{\max } / B_{\max }=r_{1} / R$, or $r_{1}=0.60 R=0.60(30 \mathrm{~mm})=18 \mathrm{~mm}$.
(b) Outside the capacitor, $0.60 B_{\max } / B_{\max }=\left(r_{2} / R\right)^{-1}$, or

$$
r_{2}=R / 0.60=50 \mathrm{~mm} .
$$

(c) From Eqs. 32-15 and 32-17,

$$
B_{\max }=\frac{\mu_{0} i_{d}}{2 \pi R}=\frac{\mu_{0} i}{2 \pi R}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(5.0 \mathrm{~A})}{2 \pi(0.040 \mathrm{~m})}=2.5 \times 10^{-5} \mathrm{~T}
$$

\# 36. From Eq. 28-11, we have $i=(\% / R) e^{-t / \tau}$ since we are ignoring the self-inductance of the capacitor. Equation 32-16 gives

$$
B=\frac{\mu_{0} i_{d} r}{2 \pi R^{2}} .
$$

Furthermore, Eq. 25-9 yields the capacitance

$$
C=\frac{\varepsilon_{0} \pi(0.05 \mathrm{~m})^{2}}{0.003 \mathrm{~m}}=2.318 \times 10^{-11} \mathrm{~F},
$$

so that the capacitive time constant is

$$
\tau=\left(20.0 \times 10^{6} \Omega\right)\left(2.318 \times 10^{-11} \mathrm{~F}\right)=4.636 \times 10^{-4} \mathrm{~s}
$$

At $t=750 \times 10^{-6} \mathrm{~s}$, the current is

$$
i=\frac{9.60 \mathrm{~V}}{20.0 \times 10^{6} \Omega} e^{-t / \tau}=9.52 \times 10^{-8} \mathrm{~A}
$$

Since $i=i_{d}$ (see Eq. 32-15) and $r=0.0300 \mathrm{~m}$, then (with plate radius $R=0.0500 \mathrm{~m}$) we find

$$
B=\frac{\mu_{0} i_{d} r}{2 \pi R^{2}}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(9.52 \times 10^{-8} \mathrm{~A}\right)(0.030 \mathrm{~m})}{2 \pi(0.0500 \mathrm{~m})^{2}}=2.28 \times 10^{-13} \mathrm{~T} .
$$

