Chapter 31

\# 4. When the switch is open, we have a series $L R C$ circuit involving just the one capacitor near the upper right corner. Equation 31-65 leads to

$$
\frac{\omega_{d} L-\frac{1}{\omega_{d} C}}{R}=\tan \phi_{\mathrm{o}}=\tan \left(-20^{\circ}\right)=-\tan 20^{\circ} .
$$

Now, when the switch is in position 1, the equivalent capacitance in the circuit is $2 C$. In this case, we have

$$
\frac{\omega_{d} L-\frac{1}{2 \omega_{d} C}}{R}=\tan \phi_{1}=\tan 10.0^{\circ} .
$$

Finally, with the switch in position 2 , the circuit is simply an $L C$ circuit with current amplitude

$$
I_{2}=\frac{\frac{\circ}{o}_{m}}{Z_{L C}}=\frac{\frac{\circ}{o}_{m}}{\sqrt{\left(\omega_{d} L-\frac{1}{\omega_{d} C}\right)^{2}}}=\frac{\frac{\circ}{m}_{m}}{\frac{1}{\omega_{d} C}-\omega_{d} L}
$$

where we use the fact that $\left(\omega_{d} C\right)^{-1}>\omega_{d} L$ in simplifying the square root (this fact is evident from the description of the first situation, when the switch was open). We solve for L, R and C from the three equations above, and the results are as follows:
(a) $R=\frac{-\circ_{m}}{I_{2} \tan \phi_{\mathrm{o}}}=\frac{-120 \mathrm{~V}}{(2.00 \mathrm{~A}) \tan \left(-20.0^{\circ}\right)}=165 \Omega$,
(b) $L=\frac{\stackrel{\circ}{o}_{m}}{\omega_{d} I_{2}}\left(1-2 \frac{\tan \phi_{1}}{\tan \phi_{\mathrm{o}}}\right)=\frac{120 \mathrm{~V}}{2 \pi(60.0 \mathrm{~Hz})(2.00 \mathrm{~A})}\left(1-2 \frac{\tan 10.0^{\circ}}{\tan \left(-20.0^{\circ}\right)}\right)=0.313 \mathrm{H}$,
(c) and

$$
\begin{aligned}
C & =\frac{I_{2}}{2 \omega_{d} \circ_{m}\left(1-\tan \phi_{1} / \tan \phi_{0}\right)}=\frac{2.00 \mathrm{~A}}{2(2 \pi)(60.0 \mathrm{~Hz})(120 \mathrm{~V})\left(1-\tan 10.0^{\circ} / \tan \left(-20.0^{\circ}\right)\right)} \\
& =1.49 \times 10^{-5} \mathrm{~F} .
\end{aligned}
$$

\# 6. (a) The rms current is

$$
\begin{aligned}
& I_{\text {rms }}=\frac{\circ^{\circ}}{Z} \\
& =\frac{\frac{\circ}{\mathrm{rms}}^{Z}}{\sqrt{R^{2}+(2 \pi f L-1 / 2 \pi f C)^{2}}} \\
& \sqrt{(20.0 \Omega)^{2}+\{2 \pi(550 \mathrm{~Hz})(25.0 \mathrm{mH})-1 /[2 \pi(550 \mathrm{~Hz})(4.70 \mu \mathrm{~F})]\}^{2}} \\
& =2.35 \mathrm{~A} .
\end{aligned}
$$

(b) The rms voltage across R is $V_{a b}=I_{\mathrm{rms}} R=(2.59 \mathrm{~A})(20.0 \Omega)=47.1 \mathrm{~V}$.
(c) The rms voltage across C is

$$
V_{b c}=I_{\mathrm{rms}} X_{C}=\frac{I_{\mathrm{rms}}}{2 \pi f C}=\frac{2.35 \mathrm{~A}}{2 \pi(550 \mathrm{~Hz})(4.70 \mu \mathrm{~F})}=144.85 \mathrm{~V} \approx 145 \mathrm{~V} .
$$

(d) The rms voltage across L is

$$
V_{c d}=I_{\mathrm{rms}} X_{L}=2 \pi I_{\mathrm{rms}} f L=2 \pi(2.35 \mathrm{~A})(550 \mathrm{~Hz})(25.0 \mathrm{mH})=203.25 \mathrm{~V} \approx 203 \mathrm{~V} .
$$

(e) The rms voltage across C and L together is

$$
V_{b d}=\left|V_{b c}-V_{c d}\right|=|144.85 \mathrm{~V}-203.25 \mathrm{~V}|=58.4 \mathrm{~V} .
$$

(f) The rms voltage across R, C, and L together is

$$
V_{a d}=\sqrt{V_{a b}^{2}+V_{b d}^{2}}=\sqrt{(47.1 \mathrm{~V})^{2}+(58.4 \mathrm{~V})^{2}}=75.0 \mathrm{~V}
$$

(g) For the resistor R, the power dissipated is $P_{R}=\frac{V_{a b}^{2}}{R}=\frac{(47.1 \mathrm{~V})^{2}}{20.0 \Omega}=111 \mathrm{~W}$.
(h) No energy dissipation in C.
(i) No energy dissipation in L.
\# 7. This circuit contains no reactances, so $\%_{\mathrm{rms}}=I_{\mathrm{rms}} R_{\text {totala }}$. Using Eq. 31-71, we find the average dissipated power in resistor R is

$$
P_{R}=I_{\mathrm{rms}}^{2} R=\left(\frac{\circ_{m}}{r+R}\right)^{2} R .
$$

In order to maximize P_{R} we set the derivative equal to zero:

$$
\frac{d P_{R}}{d R}=\frac{\circ_{o}^{2}\left[(r+R)^{2}-2(r+R) R\right]}{(r+R)^{4}}=\frac{\circ_{o}^{2}(r-R)}{(r+R)^{3}}=0 \Rightarrow R=r
$$

\# 18. (a) From Eq. 31-4, we have $L=\left(\omega^{2} C\right)^{-1}=\left((2 \pi f)^{2} C\right)^{-1}=2.41 \mu \mathrm{H}$.
(b) The total energy is the maximum energy on either device (see Fig. 31-4). Thus, we have $U_{\text {max }}=\frac{1}{2} L I^{2}=21.4 \mathrm{pJ}$.
(c) Of several methods available to do this part, probably the one most "in the spirit" of this problem (considering the energy that was calculated in part (b)) is to appeal to $U_{\max }=\frac{1}{2} Q^{2} / C$ (from Chapter 26) to find the maximum charge: $Q=\sqrt{2 C U_{\max }}=82.2 \mathrm{nC}$.
\# 42. (a) After the switch is thrown to position b the circuit is an $L C$ circuit. The angular frequency of oscillation is $\omega=1 / \sqrt{L C}$. Consequently,

$$
f=\frac{\omega}{2 \pi}=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{\left(27.0 \times 10^{-3} \mathrm{H}\right)\left(6.20 \times 10^{-6} \mathrm{~F}\right)}}=389 \mathrm{~Hz}
$$

(b) When the switch is thrown, the capacitor is charged to $V=34.0 \mathrm{~V}$ and the current is zero. Thus, the maximum charge on the capacitor is

$$
Q=V C=(45.0 \mathrm{~V})\left(6.20 \times 10^{-6} \mathrm{~F}\right)=2.79 \times 10^{-4} \mathrm{C}
$$

The current amplitude is

$$
I=\omega Q=2 \pi f Q=2 \pi(275 \mathrm{~Hz})\left(2.79 \times 10^{-4} \mathrm{C}\right)=0.682 \mathrm{~A} .
$$

\# 60. THINK We have a series $R L C$ circuit. Since R, L, and C are in series, the same current is driven in all three of them.

EXPRESS The capacitive and the inductive reactances can be written as

$$
X_{C}=\frac{1}{\omega_{d} C}=\frac{1}{2 \pi f_{d} C}, \quad X_{L}=\omega_{d} L=2 \pi f_{d} L
$$

The impedance of the circuit is $Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$, and the current amplitude is given by $I=\varepsilon_{m} / Z$.

ANALYZE (a) Substituting the values given, we find the capacitive reactance to be

$$
X_{C}=\frac{1}{2 \pi f_{d} C}=\frac{1}{2 \pi(60.0 \mathrm{~Hz})\left(70.0 \times 10^{-6} \mathrm{~F}\right)}=37.894 \Omega .
$$

Similarly, the inductive reactance is

$$
X_{L}=2 \pi f_{d} L=2 \pi(60.0 \mathrm{~Hz})\left(230 \times 10^{-3} \mathrm{H}\right)=86.708 \Omega .
$$

Thus, the impedance is

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{(400 \Omega)^{2}+(37.894 \Omega-86.708 \Omega)^{2}}=403 \Omega .
$$

(b) The phase angle is

$$
\phi=\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)=\tan ^{-1}\left(\frac{86.708 \Omega-37.894 \Omega}{400 \Omega}\right)=69.6^{\circ} .
$$

(c) The current amplitude is

$$
I=\frac{\stackrel{\circ}{o}_{m}}{Z}=\frac{36.0 \mathrm{~V}}{403 \Omega}=89.3 \mathrm{~mA} .
$$

LEARN The circuit in this problem is more inductive since $X_{L}>X_{C}$. The phase angle is positive, so the current lags behind the applied emf.

