Chapter 40

\# 2. (a) From Fig. 40-10 and Eq. 40-18,

$$
\Delta E=2 \mu_{B} B=\frac{2\left(9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T}\right)(0.15 \mathrm{~T})}{1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}}=17.38 \mu \mathrm{eV} \approx 17 \mu \mathrm{eV}
$$

(b) From $\Delta E=h f$ and with SI units we get

$$
f=\frac{\Delta E}{h}=\frac{2.78 \times 10^{-24} \mathrm{~J}}{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}=4.2 \times 10^{19} \mathrm{~Hz}=4.2 \mathrm{GHz} .
$$

(c) The wavelength is

$$
\lambda=\frac{c}{f}=\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{4.2 \times 10^{9} \mathrm{~Hz}}=7.1 \mathrm{~cm} .
$$

(d) The wave is in the short radio wave region.
\# 4. (a) An electron must be removed from the K-shell, so that an electron from a higher energy shell can drop. This requires an energy of 69.5 keV . The accelerating potential must be at least 69.5 kV .
(b) After it is accelerated, the kinetic energy of the bombarding electron is 69.5 keV . The energy of a photon associated with the minimum wavelength is 69.5 keV , so its wavelength is

$$
\lambda_{\min }=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{69.5 \times 10^{3} \mathrm{eV}}=1.78 \times 10^{-2} \mathrm{~nm}=17.8 \mathrm{pm}
$$

(c) The energy of a photon associated with the K_{α} line is $69.5 \mathrm{keV}-11.3 \mathrm{keV}=58.2 \mathrm{keV}$ and its wavelength is

$$
\lambda_{\mathrm{K} \alpha}=(1240 \mathrm{eV} \cdot \mathrm{~nm}) /\left(58.2 \times 10^{3} \mathrm{eV}\right)=2.13 \times 10^{-2} \mathrm{~nm}=21.3 \mathrm{pm}
$$

(d) The energy of a photon associated with the K_{β} line is

$$
E=69.5 \mathrm{keV}-2.30 \mathrm{keV}=67.2 \mathrm{keV}
$$

and its wavelength is, using $h c=1240 \mathrm{eV} \cdot \mathrm{nm}$,

$$
\lambda_{\mathrm{K} \beta}=h c / E=(1240 \mathrm{eV} \cdot \mathrm{~nm}) /\left(67.2 \times 10^{3} \mathrm{eV}\right)=1.85 \times 10^{-2} \mathrm{~nm}=18.5 \mathrm{pm} .
$$

\# 18. The total magnetic field, $B=B_{\text {local }}+B_{\text {ext }}$, satisfies $\Delta E=h f=2 \mu B$ (see Eq. 40-22). Thus,

$$
B_{\text {local }}=\frac{h f}{2 \mu}-B_{\text {ext }}=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(36 \times 10^{6} \mathrm{~Hz}\right)}{2\left(1.41 \times 10^{-26} \mathrm{~J} / \mathrm{T}\right)}-0.78 \mathrm{~T}=66 \mathrm{mT} .
$$

\# 34. Due to spin degeneracy $\left(m_{s}= \pm 1 / 2\right)$, each state can accommodate two electrons. Thus, in the energy-level diagram shown, two electrons can be placed in the ground state with energy $E_{1}=4\left(h^{2} / 8 m L^{2}\right)$, six can occupy the "triple state" with $E_{2}=6\left(h^{2} / 8 m L^{2}\right)$, and so forth. With 11 electrons, the lowest energy configuration consists of two electrons with $E_{1}=4\left(h^{2} / 8 m L^{2}\right)$, six electrons with $E_{2}=6\left(h^{2} / 8 m L^{2}\right)$, and three electrons with $E_{3}=7\left(h^{2} / 8 m L^{2}\right)$. Thus, we find the ground-state energy of the 11 -electron system to be

$$
\begin{aligned}
E_{\text {ground }} & =2 E_{1}+6 E_{2}+3 E_{3}=2\left(\frac{4 h^{2}}{8 m L^{2}}\right)+6\left(\frac{6 h^{2}}{8 m L^{2}}\right)+3\left(\frac{7 h^{2}}{8 m L^{2}}\right) \\
& =[(2)(4)+(6)(6)+(3)(7)]\left(\frac{h^{2}}{8 m L^{2}}\right)=65\left(\frac{h^{2}}{8 m L^{2}}\right) .
\end{aligned}
$$

The first excited state of the 11-electron system consists of two electrons with $E_{1}=4\left(h^{2} / 8 m L^{2}\right)$, five electrons with $E_{2}=6\left(h^{2} / 8 m L^{2}\right)$, and four electrons with $E_{3}=7\left(h^{2} / 8 m L^{2}\right)$. Thus, its energy is

$$
\begin{aligned}
E_{\text {1st excited }} & =2 E_{1}+5 E_{2}+4 E_{3}=2\left(\frac{4 h^{2}}{8 m L^{2}}\right)+5\left(\frac{6 h^{2}}{8 m L^{2}}\right)+4\left(\frac{7 h^{2}}{8 m L^{2}}\right) \\
& =[(2)(4)+(5)(6)+(4)(7)]\left(\frac{h^{2}}{8 m L^{2}}\right)=66\left(\frac{h^{2}}{8 m L^{2}}\right) .
\end{aligned}
$$

Thus, the multiple of $h^{2} / 8 m L^{2}$ is 66 .
\# 45. Let the power of the laser beam be P and the energy of each photon emitted be E. Then, the rate of photon emission is

$$
R=\frac{P}{E}=\frac{P}{h c / \lambda}=\frac{P \lambda}{h c}=\frac{\left(15.6 \times 10^{-3} \mathrm{~W}\right)\left(632.8 \times 10^{-9} \mathrm{~m}\right)}{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=5.0 \times 10^{16} \mathrm{~s}^{-1} .
$$

